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Abstract

We present a stellar dynamical mass measurement of a newly detected supermassive black hole (SMBH) at the center
of the fast-rotating, massive elliptical galaxy NGC 2693 as part of the MASSIVE survey. We combine high signal-to-
noise ratio integral field spectroscopy (IFS) from the Gemini Multi-Object Spectrograph with wide-field data from the
Mitchell Spectrograph at McDonald Observatory to extract and model stellar kinematics of NGC 2693 from the
central ∼150 pc out to ∼2.5 effective radii. Observations from Hubble Space Telescope WFC3 are used to determine
the stellar light distribution. We perform fully triaxial Schwarzschild orbit modeling using the latest TriOS code and a
Bayesian search in 6D galaxy model parameter space to determine NGC 2693ʼs SMBH mass (MBH), stellar mass-to-
light ratio, dark matter content, and intrinsic shape. We find =  ´( ) M M1.7 0.4 10BH

9 and a triaxial intrinsic
shape with axis ratios p= b/a= 0.902± 0.009 and = = -

+q c a 0.721 0.010
0.011, triaxiality parameter T= 0.39± 0.04. In

comparison, the best-fit orbit model in the axisymmetric limit and (cylindrical) Jeans anisotropic model of NGC 2693
prefer =  ´( ) M M2.4 0.6 10BH

9 and =  ´( ) M M2.9 0.3 10BH
9 , respectively. Neither model can account

for the non-axisymmetric stellar velocity features present in the IFS data.

Unified Astronomy Thesaurus concepts: Galaxy dynamics (591); Galaxy masses (607); Supermassive black holes
(1663); Early-type galaxies (429); Galaxies (573); Galaxy dark matter halos (1880); Galaxy evolution (594);
Galaxy kinematics (602)

1. Introduction

The most massive SMBHs in the local universe have been
found at the centers of some of the most massive nearby
elliptical galaxies. At stellar massesM* 1011.5Me targeted by
the volume-limited MASSIVE galaxy survey (Ma et al. 2014),
a majority of these massive elliptical galaxies exhibit slow or
no detectable rotation (Veale et al. 2017a, 2017b; Ene et al.
2018). When selected by environments, massive galaxies in the
cores of galaxy clusters are also predominantly slow or non-
rotators (e.g., Brough et al. 2017; Krajnović et al. 2018a;
Graham et al. 2018; Loubser et al. 2018). In comparison, the
ATLAS3D project surveyed early-type galaxies at lower masses
(1010MeMå 1011.5Me) and found most to be fast rotators
(Emsellem et al. 2011).

When the kinematic axis of a massive elliptical galaxy can
be identified, it is often misaligned from the photometric major
axis (e.g., Ene et al. 2018). Detailed IFS kinematic maps also
show intricate local twists, and the central and main-body
kinematic axes within a galaxy are not always aligned (Ene
et al. 2020; Krajnović et al. 2020). All these features are strong
indications that local massive elliptical galaxies are triaxial in
intrinsic shape, and not axisymmetric as is often assumed in
prior dynamical modeling studies of early-type galaxies, which
would only allow rotation about the minor axis (Binney 1985).

The MASSIVE galaxy survey (Ma et al. 2014) is designed to
study all the major dynamical components—SMBH, stars, and
dark matter halo—in the most massive ∼100 *( )M M1011.5
early-type galaxies (ETGs) in the local volume (out to ∼100
Mpc). For a subset of 20 MASSIVE galaxies, we have
completed the stellar kinematic measurements from our IFS
observations that cover both the galaxies’ central regions with
high spatial resolution, and wide fields out to at least one
effective radius. In this paper, we focus on NGC 2693, a galaxy
with one of the largest ratios of V/σ, where the stellar rotation is
V∼ 160 km s−1 and the velocity dispersion is σ∼ 300 km s−1

(Veale et al. 2017a; Ene et al. 2020). The only other MASSIVE
galaxy that exhibits similarly fast and regular rotation is
NGC 1453. NGC 1453 has recently been studied both in the
axisymmetric limit (Liepold et al. 2020) and with fully triaxial
orbit modeling (Quenneville et al. 2022). The triaxial models
have been found to better recover the input kinematics while also
fitting the non-axisymmetric features present in NGC 1453.
Given the similarities between NGC 2693 and NGC 1453, we
turn to NGC 2693 in this paper.
We use the orbit superposition method to obtain dynamical

mass measurements of the components of NGC 2693 with
observations taken as part of the MASSIVE Survey. We use our
latest version of the TriOS code (Quenneville et al. 2021, 2022)
based on the code by van den Bosch et al. (2008)6 to perform a
full triaxial modeling of the stellar orbits in NGC 2693 and to

The Astrophysical Journal, 928:178 (13pp), 2022 April 1 https://doi.org/10.3847/1538-4357/ac58fd
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

6 https://github.com/remcovandenbosch/TriaxSchwarzschild

1

https://orcid.org/0000-0001-7040-9117
https://orcid.org/0000-0001-7040-9117
https://orcid.org/0000-0001-7040-9117
https://orcid.org/0000-0002-7703-7077
https://orcid.org/0000-0002-7703-7077
https://orcid.org/0000-0002-7703-7077
https://orcid.org/0000-0002-1881-5908
https://orcid.org/0000-0002-1881-5908
https://orcid.org/0000-0002-1881-5908
https://orcid.org/0000-0002-4430-102X
https://orcid.org/0000-0002-4430-102X
https://orcid.org/0000-0002-4430-102X
https://orcid.org/0000-0002-6148-5481
https://orcid.org/0000-0002-6148-5481
https://orcid.org/0000-0002-6148-5481
https://orcid.org/0000-0002-5612-3427
https://orcid.org/0000-0002-5612-3427
https://orcid.org/0000-0002-5612-3427
https://orcid.org/0000-0002-5213-3548
https://orcid.org/0000-0002-5213-3548
https://orcid.org/0000-0002-5213-3548
mailto:jacobpilawa@berkeley.edu
http://astrothesaurus.org/uat/591
http://astrothesaurus.org/uat/607
http://astrothesaurus.org/uat/1663
http://astrothesaurus.org/uat/1663
http://astrothesaurus.org/uat/429
http://astrothesaurus.org/uat/573
http://astrothesaurus.org/uat/1880
http://astrothesaurus.org/uat/594
http://astrothesaurus.org/uat/602
https://doi.org/10.3847/1538-4357/ac58fd
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac58fd&domain=pdf&date_stamp=2022-04-07
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac58fd&domain=pdf&date_stamp=2022-04-07
http://creativecommons.org/licenses/by/4.0/
https://github.com/remcovandenbosch/TriaxSchwarzschild


simultaneously constrain the galaxy’s intrinsic shape, MBH, and
other mass parameters.

In Section 2, we describe the photometric observations used to
model the deprojected stellar mass distribution of NGC 2693, as
well as the spectroscopic observations from GMOS (Hook et al.
2004) covering the central kpc and wide-field observations from
the McDonald Mitchell IFS (Hill et al. 2008). In Section 3, we
describe the triaxial modeling and phase space sampling in our
Schwarzschild orbit models. In Section 4, we discuss our search
for the best-fit triaxial galaxy model, marginalization scheme for
extracting best-fit parameters, and resulting best-fit dynamical
model. In Section 5, we compare the triaxial model to
axisymmetric Schwarzschild orbit models and Jeans modeling
of NGC 2693.

We adopt a distance to NGC 2693 of 71.0Mpc from the
MASSIVE-WFC3 project (Goullaud et al. 2018) using the
surface-brightness fluctuation technique (Blakeslee et al. 2021;
Jensen et al. 2021). At this distance, 1″ is 354 pc, assuming a
flat ΛCDM cosmology with a matter density of Ωm= 0.315 and
a Hubble parameter of H0= 70 km s−1 Mpc−1.

2. Photometric and Spectroscopic Observations

NGC 2693 is a relatively isolated galaxy, being the only
identified member of its galaxy group in the 2MASS “high-
density contrast” group catalog (Crook et al. 2007). We obtain
photometric observations of NGC 2693 in the F110W filter of
HST and spectroscopic observations using GMOS in IFS mode
on the 8.1 m Gemini North telescope and the Mitchell IFS on
the 2.7 m Harlan J. Smith Telescope at McDonald Observatory.
In this section, we describe these observations, the data
reduction process, modeling the surface brightness profile, and
the extraction of the stellar kinematics of NGC 2693.

2.1. HST Observations and Stellar Mass Profile of NGC 2693

We model the spatial distribution of stars in NGC 2693 with
observations from the IR channel of HST WFC3 in the F110W

filter (Figure 1). Observations (GO-14219, P.I. J. Blakeslee)
were taken over a single orbit and have a total exposure time of
2695 s. This orbit was divided into five dithered exposures with
a subpixel dither pattern to improve measurements of the point-
spread function (PSF). We reduce the images using STScI’s
standard reduction pipeline, a specialized Python program7 to
correct for variable background levels, and the Astrodriz-
zle package (Gonzaga et al. 2012). We additionally perform
background subtraction, removing a neighboring galaxy
located 55″ to the south of NGC 2693, and construct a mask
to exclude foreground stars, other galaxies, and detector
artifacts. The final F110W image has a pixel scale of 0 1.
For details on the photometric data reduction, see Goullaud
et al. (2018).
The HST observations of NGC 2693 show slightly boxy

isophotes near the center of the galaxy, which become disky at
radii larger than∼5″. There is a small compact dust disk extending
1 5 in radius from the center. The galaxy’s luminosity-weighted
ellipticity is nearly constant with radius (beyond the region of the
central dust disk) with a mean value 〈ò〉L= 0.27± 0.002
(Goullaud et al. 2018). Below, we parameterize the surface
brightness of NGC 2693 as a sum of 2D Gaussians with a
common center and PA.
We run the Cappellari (2002) Multi-Gaussian Expansion

(MGE) code with regularization to avoid flattened components
that artificially restrict the range of inclination angles that can be
used during the dynamical modeling. We then tweak the MGE
solution using Galfit (Peng et al. 2002). We set a lower
boundary on each component’s projected axis ratio, ¢qk , of 0.65,
which was determined from the previous regularized MGE run.
The WFC3 PSF is accounted for by an empirical PSF constructed
from extracting, summing, and renormalizing 11 bright stars
within the field of view. We apply the mask of other objects in the
field plus a mask for the central dust disk. Since no high-
resolution multiband imaging for NGC 2693 was available, we

Figure 1. (Left) The F110W-band HST image of NGC 2693 used for our photometry. A companion galaxy that is masked from photometric analysis (see text) can be
seen ∼50″ south of NGC 2693. (Left inset) NGC 2693 has a dust disk extending approximately 1.5″ (in radius) from the center. This feature is masked from our MGE
fitting. (Right) Isophotes of the HST WFC3 IR image of NGC 2693 (black) and the best-fit MGE model (red). The inset shows the central region containing the
nuclear dust disk. The gray regions are masked when performing the fit as described in the text.

7 https://github.com/gbrammer/wfc3
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construct a dust mask by eye initially, conservatively flagging
only the most obviously affected pixels, and then we adopt an
iterative approach. After the Galfit run converged, we examine
the residual image and extend the dust mask to neighboring pixels
with residuals above a selected threshold. We continually repeat
the process, each time modifying the threshold, until achieving
residuals at the ∼5% level at the nucleus.

Our best-fit MGE is composed of 10 Gaussians with the
central surface brightness Ik, projected dispersion s¢k, and ¢qk
given in Table 1. The model is a good description of the data,
as seen in Figure 1, with residuals below ∼6% out to a radius
of ∼70″.

All of the MGE components have the same PA of 167°.9 east
of north, but we run Galfit again, allowing for the PA to
vary between components. The initial guesses for the
parameters are set to the best-fit MGE from Table 1, and we
use the same empirical PSF and mask. When allowing for PA
twists, our best-fit MGE consists of three circular Gaussians at
small radii. The next five Gaussians have PA twists of <3°
relative to a PA of 167°.9, and the outer three components have
smaller PAs of ∼155°. While we subtracted the companion
galaxy and masked the remaining residuals, the outermost
region of NGC 2693 likely remains contaminated by the
companion galaxy, causing the smaller PAs for the largest three
MGE components. Nevertheless, these two MGEs differed by
less than 5% at all radii for which we have kinematic data.
Beyond 50″, the relative difference approaches ∼10%,
primarily due to the companion. The negligible impact of
allowing for a PA twist does not seem to improve our fit, but
rather fits the remaining contamination of the companion
galaxy. Therefore, we adopt the MGE model with a spatially
constant PA.

We further test the companion galaxy’s impact on the
measured photometric position angle by fitting subsections of
the full HST WFC3 image. We perform two additional fits, one
to the central 20″× 20″ region and another to the central
40″× 40″ region as opposed to the full 141″× 125″ image. We
use our fiducial MGE presented in Table 1 as initial guesses for
the 10 Gaussians, and we require the PA and center for all 10
components to be the same. In both cases, the preferred
photometric position angle changes negligibly compared to the
fiducial case of 167°.9 E of N. When fitting only to the central

20″× 20″ region of the image, the preferred photometric PA is
168°.6 E of N, and when fitting to the 40″× 40″ region, the PA
of the Gaussians is 168°.2 E of N.

2.2. Central GMOS Kinematics.

We observed the central region of NGC 2693 in the 2016B
semester with the two-slit mode of GMOS, providing a 5″× 7″
(∼1.7 kpc× 2.4 kpc) field of view composed of 1000
hexagonal lenslets, for a projected diameter of 0.2″ per lenslet.
In total, six science exposures were taken, each of 1200 s
exposure time. The median seeing was 0.6″ FWHM. We used
the R400-G5305 grating with the CaT filter for clean coverage
from 7800–9330Å. A 5″× 3.5″ region of the sky, offset ¢1
from NGC 2693ʼs central region was simultaneously observed.
The spectral resolution was determined from arc lamp lines for
each lenslet, with a median value of 2.3Å FWHM.
The GMOS lenslets are binned to achieve a target S/N of

125 using the Voronoi-binning procedure (Cappellari &
Copin 2003). This procedure results in a total of 60 bins. The
spectra are co-added from individual lenslets within a single
Voronoi bin as described in Ene et al. (2019). Example spectra
for three bins at increasing radii are shown in Figure 2 (black
curves).
We use the CaII triplet absorption features over a rest

wavelength of 8420–8770Å to extract the stellar line-of-sight

Table 1
Best-fit MGE Parameters for the NGC 2693 HST WFC3 IR Photometry

Ik (LF110W,e/pc
2) s¢ ( )k

¢qk

6521.78208 0.10611 0.99990
18597.03132 0.24071 0.99990
17231.46878 0.51203 0.98100
14094.87758 1.21090 0.78400
4883.63124 2.49551 0.76540
1854.85184 4.66292 0.74880
694.17907 8.71737 0.73490
177.10426 12.21259 0.68370
217.66116 21.51988 0.71920
59.57494 66.58575 0.78070

Note. Each Gaussian component (k) is parameterized by a central surface

density ps= ¢ ¢I L q2k k k k
2 , dispersion s¢k , and axis ratio ¢qk , where primed

variables are projected quantities. The central surface densities have been
corrected for a galactic extinction of 0.017 mag and assume an absolute (Vega)
magnitude of 3.89 for the Sun. The components all have a PA of 167°. 9 east of
north.

Figure 2. CaII triplet region of the GMOS IFS spectrum (black) of NGC 2693
for three example bins located at increasing distance from the nucleus: (top)
central bin with S/N = 204, (middle) bin 1.50″ from center with S/N = 144,
and (bottom) bin 3.44″ from center with S/N = 100. The spectrum is fit by
broadening a series of stellar templates by the best-fit LOSVD (blue) over a
wavelength range of 8420–8770 Å. The gray shaded regions are excluded
from the fit to account for improperly subtracted sky lines. The red points are
the (best-fit minus observation) residuals offset by constants for clarity. The
typical residual is ∼0.5%.
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velocity distribution (LOSVD) for each bin with the penalized
pixel-fitting (pPXF) method of Cappellari (2017). We choose
to decompose each LOSVD into a Gauss–Hermite series up to
order n= 8 as is done in Liepold et al. (2020). An additive
polynomial of degree zero (a constant) and a multiplicative
polynomial of degree three are used to model the stellar
continuum for the spectra.

We compare two sets of stellar templates chosen from the
MILES Calcium Triplet (CaT) Library of 706 stars (Cenarro
et al. 2001): the first set is limited to the 15 stars from Table 2
of Barth et al. (2002); the second set includes all 706 stars in
the library. The resulting kinematics are consistent within
measurement errors, and we choose to use the former set of
kinematics for dynamical modeling discussed later in this
paper. These template spectra cover the wavelength range of
8347–9020Åwith a 1.5Å spectral resolution FWHM.

We follow a kinematic extraction procedure nearly identical
to that of Liepold et al. (2020). Three example stellar templates
broadened by the best-fit LOSVDs are shown in Figure 2 (blue
curves). The errors on the kinematic moments are determined
with bootstrap methods as described in Section 4 of Ene et al.
(2019). Figure 3 shows the kinematic maps of the eight Gauss–

Hermite velocity moments for all 60 GMOS bins; Figure 4
shows the corresponding radial profiles of the moments (blue
filled circles). The velocity map shows regular rotation with the
maximum velocity reaching |V|∼ 160 km s−1; the σ map
shows a central peak with an amplitude of ∼320 km s−1. The
mean errors on V and σ are 4.3 km s−1 and 5.0 km s−1,
respectively. The errors on higher-order moments (h3 through
h8) are similar in amplitude, ranging from 0.010 to 0.013.

2.3. Wide-field Mitchell Kinematics

NGC 2693 is one of ∼100 MASSIVE galaxies observed
using the Mitchell IFS. Three dither positions were used, and
during each dither, we interleaved two 20 minute science
frames with one 10 minute sky frame, for a total exposure time
of 2 hr on source. The Mitchell IFS consists of 246 fibers
covering a 107″× 107″ field of view. The observations
covered a spectral range of 3650–5850Åthat include the Ca
HK region, the G-band region, Hβ, Mgb, and several Fe
features.
Each fiber in the central region of NGC 2693 yields a

spectrum of S/N 50, while the outer fibers are binned to

Figure 3. Spatial maps of the stellar kinematics extracted from the Gemini GMOS IFS spectra for 60 bins in the central 5″ × 7″ region of NGC 2693. Each panel
shows a different moment of the Gauss–Hermite expansion of the line-of-site velocity distribution: the two panels on the top left are the velocity V and velocity
dispersion σ, with the higher-order hi moments characterizing deviations from Gaussianity. The +x axis of the galaxy is located 167° east of north (north is up and east
is to the left). The velocity map shows a prominent rotation pattern with maximal velocities of |V| ∼ 160 km s−1; the σ maps shows a central peak. The black lines are
surface brightness contours from the best-fitting MGE model in Table 1 and Figure 1.
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achieve an S/N� 20. We obtain a total of 33 bins but drop the
outermost four bins at ∼46″ due to low S/N. We model the
stellar LOSVD using a method similar to that applied to the
GMOS data, fitting up to order n= 6 due to the lower S/N. We
use the MILES library of 985 stellar spectra (Sánchez-Blázquez
et al. 2006; Falcón-Barroso et al. 2011) as the templates.
Details of the Mitchell data reduction and kinematic measure-
ments are described in Veale et al. (2017a) and Veale et al.
(2017b).

The radial profiles of the Mitchell kinematic moments are
shown in Figure 4 (pink filled circles). The innermost few
Mitchell fibers (each with a 4.1″ diameter) overlap the FOV of
GMOS. Reassuringly, the Mitchell kinematics in this region are in
good agreement with the GMOS values averaged over the GMOS
FOV. The mean errors on the Mitchell kinematics are about two
times larger than the GMOS kinematics. The mean errors on V
and σ are 8.95 km s−1 and 12.2 km s−1, respectively, with errors
on higher-order moments (h3 through h6) ranging from 0.030
to 0.039.

3. Triaxial Orbit Modeling of NGC 2693

3.1. The TriOS Code and Input Kinematics

We use the TriOS code (Quenneville et al. 2021, 2022) to
perform orbit modeling of NGC 2693. The galaxy is modeled

as a stationary, triaxial gravitational potential composed of an
SMBH, a stellar component specified by the deprojected MGE,
and a dark matter halo. The six-parameter galaxy model and the
method used to search this parameter space are described in
detail in Section 4.1.
For a collection of orbits spanning the phase space, we

integrate each orbit for 2000 (loop orbits) or 200 (box orbits)
dynamical times. At a large number of steps along the
trajectory, we project the orbit onto the sky, keeping track of
the projected position and line-of-sight kinematics. For each
data set (GMOS and Mitchell), the projected position is
convolved with the respective instrumental PSF, and steps in
the trajectory are binned according to the apertures described in
Sections 2.2 and 3.1. This produces (i) a measure of the fraction
of that orbit’s time spent in each aperture and (ii) the LOSVD
associated with the orbits within each kinematic bin. As
described in Section 3.2, a superposition of these orbital
contributions is found that best reproduces the observed
kinematic LOSVD. We repeat this process for many gravita-
tional potentials, to find the galaxy parameterization that most
closely reproduces the observed kinematics.
We fit for eight moments of the GMOS kinematics and six

moments of the Mitchell kinematics presented in Section 2. We
constrain additional moments up to and including h12 to be
0.0± δ, where δ represents typical errors in the highest odd and

Figure 4. Radial profiles of the velocity moments determined from the GMOS (blue circles) and Mitchell (pink circles) IFS observations. The observed moments are
well-matched by those predicted from our best-fit triaxial galaxy model (black open squares) with mass parameters (MBH, M

*/L, M15) = (1.7 × 109Me, 2.35,
7.1 × 1011Me) and shape parameters =( ) ( )T T T, , 0.39, 0.09, 0.17maj min . The spatial bins have been unfolded such that the bins whose centers lie between −90° and
+90° of the photometric PA are plotted with a positive radius and others with a negative radius. Note that the axes are on a linear scale between −1″ and 1″ and
logarithmically scaled otherwise.
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even moments of each kinematic data set. Our previous tests
have showed that constraining only the lowest four moments
and leaving the higher-order moments free in the orbit model
could result in spurious behavior in the higher-order moments
and the resulting LOSVDs (Figures 10 and 11 of Liepold et al.
2020). We test the effects of constraining up to h16, but
moments h13 to h16 are sufficiently close to zero when
constraining the first twelve moments that the added constraint
on the last four moments does not change our fits. Thus, we opt
to leave moments higher than h13 unconstrained. We note that
leaving moments h9 to h12 unconstrained can shift the inferred
best-fit parameters by ∼10%.

Throughout the analysis, we model the GMOS and Mitchell
PSFs as single, circularly symmetric Gaussians with respective
FWHMs of 0.56″ and 1.2″. To keep the potential non-singular
at the origin, we use a Plummer-style potential for the central
black hole with a force softening length of 3× 10−4 arcsec,
which is roughly three orders of magnitude smaller than the
central-most GMOS bins.

3.2. Orbital Phase-space Sampling and Orbital Weight
Optimization

Insufficient orbit sampling can bias the inferred mass and
shape parameters, so particular care is needed in choosing
initial conditions for the orbits. In the TriOS code, the orbits are
initialized in two different spaces, referred to as “start spaces”
(Schwarzschild 1993; van den Bosch et al. 2008). A Cartesian
coordinate system centered on the galaxy’s nucleus is used.
The x, y, and z axes are parallel to the intrinsic major axis a,
intrinsic intermediate axis b, and intrinsic minor axis c,
respectively.

The first start space, called the x–z start space, launches loop
orbits from the (x, z) plane and a velocity in the +y direction at
NE= 40 different energies (implicitly sampled over radii). The
(x,z) positions are determined by dividing the start space into
NI2 rays spanning polar angles from 0 to π/2 in the x–z plane;
along each ray, we space NI3 orbits. The code allows for
additional dithering of orbits, where we group together
Ndither= 3 adjacent initial conditions for denser and smoother
phase-space sampling. Dithering orbits increases the sampling
density by a factor of Ndither

3 because dithering is performed in
all three dimensions. Orbits launched from the same initial
position but with velocity in the −y direction are valid orbits.
To include these orbits in our modeling, we invert the LOSVD
from each orbit in the (x, z) start space and store the resulting
orbits in a second “retrograde” library.

Similar to NGC 1453 (Section 4.3 of Quenneville et al.
(2022)), we find spurious oscillations in the goodness-of-fit χ2

landscape while varying T for NGC 2693 when using =N 9I2
and =N 9I3 in the (x,z) start space. The spacing between these
oscillations matches the spacing between dithered initial
conditions, resulting in periodic local minima—and thus biased
results for the intrinsic galaxy shape. We eliminate these
unwanted oscillations by increasing the angular sampling NI2 of
orbits in the (x,z) start space from =N 9I2 to =N 15I2 . The
total number of orbits used in our loop library is therefore
´ ´N2 dither

3 ´ ´ = ´ ´N N N 2 3E I I
3

2 3 40× 15× 9= 291,
600, where the factor of 2 accounts for the time-reversed copy
of each orbit.

A second start space, called the stationary start space, is used
to generate a library of box orbits in a triaxial system. In this
start space, orbits with a given energy E are launched at rest

with vx= vy= vz= 0 from starting positions, where the
gravitational potential is Φ(R, θ, f)= E, and θ and f are the
polar and azimuthal angles in the usual spherical coordinate
system. Both θ and f are sampled uniformly between 0 and π/
2 at Nθ= 9 and Nf= 9 locations. We find no oscillatory
behavior in the resulting χ2 for this start space, so we choose
(Nθ, Nf, Ndither)= (9, 9, 3). The total number of orbits in our
box library is thus 33× 40× 9× 9= 87, 480.
With three integrated orbit libraries consisting of 291,

600+ 87, 480= 379, 080 orbits for a given galaxy model, we
solve for the linear combination of orbital weights that best fits
the observed kinematics and surface brightness. As noted, we
use a dithering factor of 3, meaning that 33= 27 neighboring
orbits are bundled while solving for the orbital weights.
Accordingly, there are 379, 080/33= 14, 040 independent
weights in each model. We compute these weights to minimize
the χ2 associated with the kinematics using non-negative least
squares (Lawson & Hanson 1995), under the constraint that
both the projected mass within each aperture and the 3D mass
distribution in coarse bins are consistent within 1% of the
MGE. We do this for all kinematic bins simultaneously, to
build a model LOSVD in each bin for each galaxy model.
We note that the choice of 1% mass constraint above is

based on the range of values commonly adopted in earlier orbit
modeling work (e.g., 2% in van den Bosch & de Zeeuw 2010;
1% in Walsh et al. 2017). Our results do not depend on the
exact value used: relaxing the 3D mass constraint from 1% to
10% changes our best-fit MBH reported below by only a few
percent, which is well within the 1σ uncertainty. Additionally,
the typical χ2 associated with the mass constraint is only a
small fraction (∼0.5%) of the size of the χ2 from the stellar
kinematics. We obtain identical MBH regardless of whether we
use χ2 from kinematics alone or include χ2 associated with the
mass constraint.

4. Parameter Search of Triaxial Models

4.1. Galaxy Model

We use a six-parameter model to describe the triaxial
potential of NGC 2693. Three parameters are for the mass
components: black hole mass MBH, stellar mass-to-light ratio
M

*

/LF110W (hereafter M*/L), and enclosed dark matter mass at
15 kpc, M15. A logarithmic dark matter halo is assumed, where
the enclosed dark matter mass at radius r is

< =
+

( ) ( )M r
V

G

r

r R
, 1c

c

2 3

2 2

where Rc is the scale radius and Vc is the circular velocity of the
halo. We fit for the enclosed dark matter mass at 15 kpc, which
is approximately the outer edge of our outermost mass bin.
The other three parameters of our galaxy model encode the

intrinsic shape of NGC 2693. Previous dynamical studies used
angles (θ, f, ψ), or axis ratios = ¢( ) ( )u p q a a b a c a, , , , , to
relate the projected and intrinsic shapes of a triaxial galaxy.
Here, u is a compression factor relating the intrinsic (unprimed)
and projected (primed) length scales; p is a ratio between the
intrinsic intermediate axis b and the intrinsic major axis a (with
projected major axis ¢a ); and q is the ratio between the intrinsic
minor axis c and the intrinsic major axis. Additionally,
¢ = ¢ ¢q b a describes the projected flattening of the MGE

component. In general, these axis ratios are different for each
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MGE component, as those components have different projected
flattenings.

We instead adopt the new parameters ( )T T T, ,maj min
introduced in Quenneville et al. (2022):

=
-
-

=
-
-

=
¢ -
-

( ) ( )T
p

q
T

u

p
T

uq q

p q

1

1
,

1

1
, , 2

2

2 maj

2

2 min

2 2

2 2

where T is the commonly used triaxiality parameter, Tmaj

parameterizes the length of the projected major axis relative to
the minimum value b and maximum value a, and Tmin

parameterizes the length of the projected minor axis relative
to the minimum c and maximum b. The three parameters T,
Tmaj, and Tmin form a convenient unit cube, each with an
allowed range of 0 to 1. They have a number of additional
desirable properties when compared to the axis ratios (u, p, q)
or angles (θ, f, ψ); see Section 3.4 of Quenneville et al. (2022).
Note that, while these shape parameters are expressed in terms
of the axis ratios in Equation (2), they are constant for different
MGE components when the PAs of the MGE components are
identical. As shown in Equations (8) and (A2) in Quenneville
et al. (2022), the angles (θ, f, ψ) can be directly computed from
a ( )T T T, ,maj min triplet and vice versa.

4.2. Latin Hypercube Sampling and Bayesian Search

As in Quenneville et al. (2022), we use the grid-free Latin
hypercube sampling method (McKay et al. 1979) to search the 6D
model parameter space: MBH, M

*/L, M15, T, Tmaj, and Tmin. Latin
hypercube sampling is becoming increasingly common in
computer-designed experiments, due to the simplicity of the
sampling algorithm and the desirable space-filling properties in
high-dimensional parameter spaces. We adopt the Latin hyper-
cube scheme described in Jin et al. (2005) and implemented in the
Python package SMT (Bouhlel et al. 2019).

In this method, we first divide each dimension of our search
space into N cells, where N is the number of galaxy models in a
Latin hypercube batch. We then uniformly sample points in
each dimension until each cell contains a point, uniformly
filling the space. We note that we use the “center” dispersal
criterion in SMT, which places new points in the center of each
hypercube cell. The result is a set of model points spanning six
dimensions more uniformly than a regular grid and allowing for
a more representative sampling of the likelihood function as a
function of the six model parameters.

When drawing points from intrinsic-shape space, we opt to
sample uniformly in Tmaj and Tmin rather than in Tmaj and
Tmin. For nearly axisymmetric galaxies, this sampling space
results in fewer unrealistically flat models, increasing the
efficiency of our parameter search.

After running preliminary searches over broad ranges of
parameters, we choose the uniform prior ranges ofMBHä [0, 4]×
109Me, M*/Lä [2.0, 2.85]Me/Le, M15ä [1, 13]× 1011Me,
Tä [0.15, 0.65], Tmajä [0.0, 0.6], and Î [ ]T 0.0, 0.4min for
our parameters. After each hypercube realization of roughly
1000 galaxy models, we model the χ2 likelihood landscape as a
function of the six parameters using Gaussian process regression.
We construct posterior distributions of the space and estimate the
best-fit values for each parameter using dynamic nested sampling
(Speagle 2020). To test for convergence in our model sampling,
we perform jackknife resampling where the regression and
parameter inference is repeatedly performed using subsets of the

full suite of models. In total, we generate 8530 galaxy model
points—which, when jackknife-resampled, converge on the same
best-fit galaxy parameters.
To map the high-likelihood region in fine detail and to serve

as an additional test for convergence from our hypercube
iterations, we perform one more independent check of our best-
fit parameters. We again perform a 6D Gaussian process
regression function to the χ2 landscape produced by the 8530
models described above. We then sample 1000 additional
model points with another hypercube, rejecting those that fall
outside of the 3σ confidence volume, as estimated by that
regression fitted to the previous 8530 model points. The
rejection sampling procedure very efficiently populates the χ2

minimum. Of the 1000 points in that sample, ∼9% lie within
the 3σ confidence volume for six parameters (Δχ2≈ 20.06),
compared to just ∼4% from the uniform 8530 point sample.
Both the uniform hypercube of 8530 models and the 1000

rejection-sampled hypercube models converge on the same
best-fit parameters. We include both sets here. The resulting 6D
posterior distribution of our 9530 production run models is
shown in Figure 5. We determine the best-fit value and
uncertainties by fitting the χ2 landscape with Gaussian process
regression with a squared-exponential covariance kernel and
sampling that landscape with the dynamic nested sampler
described in Speagle (2020). A uniform prior is assumed for all
parameters. The 1σ, 2σ, and 3σ confidence regions in 1D and
2D are computed from the posterior distribution marginalized
over all other dimensions. These confidence levels correspond
to Δχ2= 1, 4, and 9 in 1D and Δχ2≈ 2.3, 6.2, 11.8 in 2D.

4.3. Best-fit Triaxial Model

The best-fit galaxy model is an excellent fit to the observed
stellar kinematics, shown in Figure 4. The best-fit parameters
from the 6D posterior distribution in Figure 5 are listed in
Table 2. The total χ2 of the best-fit triaxial model is 265.9, with
19.7 from the higher-order moments that are constrained to be
0.0± δ. As a test, we have repeated the regression using only
four Gauss–Hermite moments measured from the spectra while
setting h5 and beyond to 0.0± δ described above. The best-fit
MBH is within 0.5σ confidence interval of the fiducial model in
Table 2, but the uncertainties on MBH in this case increase by
∼10%. The same trend is reported in Table 2 of Liepold et al.
(2020).
As we will discuss further in Section 6.1, our inferred

MBH= (1.7± 0.4)× 109Me for the SMBH in NGC 2693 is
within the intrinsic scatter of the SMBH–galaxy scaling relations.
For the intrinsic shape of NGC 2693, we can compare our inferred
axis ratios =  -

+( ) ( )p q, 0.902 0.009, 0.721 0.010
0.011 with the mean

galaxy shapes for 49 slow-rotating galaxies in the MASSIVE
survey from Ene et al. (2018). In that work, based on the observed
ellipticity and misalignment between the kinematic and photo-
metric axes, the mean flattening of the galaxy sample was
estimated statistically to be (p, q)= (0.88, 0.65), with 56% of
galaxies having p> 0.9. The triaxial shape of NGC 2693 is
therefore quite close to the mean values. NGC 1453, the other
MASSIVE galaxy for which we have performed triaxial orbit
modeling (Quenneville et al. 2022), has best-fit shape parameters
of (p, q)= (0.93, 0.78), indicating a slightly less flattened shape
than NGC 2693 and the mean MASSIVE galaxy. Additionally,
the intrinsic shapes of NGC 2693 and NGC 1453 are consistent
with the distribution of shapes of fast rotators found in the
IllustrisTNG50 and IllustrisTNG100 simulations (Pulsoni et al.
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2020), where the mean axis ratios are (p, q)∼ (0.9, 0.52) and the
dispersion is σ∼ 0.15 for the most massive fast-rotating elliptical
galaxies.

We note that, by construction, the axis ratios (p, q, u) of each
MGE component obey the relation ¢q uq p u0 1    
(see, e.g., Section 2.1 of Quenneville et al. 2022). For the MGE
of NGC 2693, the most flattened component has ¢ =q 0.684.
For physically useful deprojections, we may expect q 0.2
(Binney & de Vaucouleurs 1981). The allowed ranges of (p, q,
u) are therefore quite narrow, in particular for u, which is
constrained to be between ∼0.9 and 1. The errors on these
parameters in Table 2, while appearing small in absolute terms,
are on the order of ∼5%–10% of the allowed ranges.

We also highlight that the recovered viewing angle
q = 


-

+66 3
4 , which corresponds to the galaxy’s inclination in

the oblate axisymmetric limit, is consistent with the inclination
of the galaxy estimated from the nuclear dust disk at
NGC 2693ʼs center, which we measure to be i≈ 70°.

We have also run two additional galaxy models using the
best-fit parameters shown in Table 2, but with MBH= 0 and
MBH twice the best-fit value, to assess what features in the
kinematics provide the black hole mass constraint. Both models
are a worse fit to the kinematic data, giving a Δχ2= 38.1 when
there is no black hole present and aΔχ2 of 17.9 when the black
hole is twice as massive. As expected, the inner kinematic data
provide significant constraints onMBH, with ∼30% and 50% of
the additional Δχ2 coming from the inner ∼1″ data for the two
test cases, respectively.
We use the computed orbit libraries to calculate the orbital

composition, as well as the radial velocity dispersion σr and
tangential velocity dispersion s s sº +q f( ) 2t

2 2 of NGC 2693.
We present the orbital fractions and two anisotropy parameters
β and βz as a function of radius in Figure 6. Long-axis tubes
and box orbits, both of which are only present in triaxial
potentials, make up ∼40% of the orbits at small radii and 35%
of the orbits at outer parts of the galaxy. Near the center of the

Figure 5. (Lower left) 1D and 2D marginalized posteriors for the triaxial orbit models of NGC 2693 described in the text. We marginalize over a smoothed 6D
landscape generated with Gaussian process regression. The 1σ, 2σ, and 3σ contours are represented by the curves in red, green, and blue, respectively, and as different
shade of gray in the 1D panels. Above each 1D posterior distribution are the extracted best-fit values and 1σ confidence intervals. (Upper right) 1D and 2D
marginalized posteriors in the axis-ratio space of (u, p, q). Below each 1D posterior are the best-fit values and 1σ confidence intervals.
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galaxy, the orbits are mostly tangential with β< 0 but become
radially anisotropic beyond ∼1 kpc.

5. Axisymmetric Dynamical Modeling of NGC 2693

For a comparison study, we have performed axisymmetric
modeling of NGC 2693 using both the orbit superposition
method and Jeans modeling. We describe the results from each
method below.

5.1. Schwarzschild Orbit Modeling in the Axisymmetric Limit

We use the axisymmetrized version of the TriOS code first
described in Quenneville et al. (2021), with further improve-
ments in the mass binning and acceleration table as discussed
in Quenneville et al. (2022). Liepold et al. (2020) first applied
this code to NGC 1453; here, we use similar settings to achieve
axisymmetry within the triaxial TriOS code. We ensure the low
Lz space is well-sampled by tube orbits and do not include the
box orbit library (which has Lz= 0) explicitly. We set the
viewing angle ψ sufficiently close to 90° in the input parameter
file, i.e., |ψ−90°|= 10−9, to ensure no long-axis tube orbits are
present. For the remaining short-axis tube orbits, we enforce
axisymmetry by making 40 copies of each orbit, each copy
rotated successively by 2π/40 about the intrinsic minor axis of
the galaxy (Section 3 of Quenneville et al. 2021). These three
precautions are necessary to run the triaxial code in the
axisymmetric limit and obtain robust parameter constraints. We
choose =( ) ( )N N N, , 9, 9, 3I I dither2 3 for the phase-space sam-
pling, and include two copies of the integrated orbit library in
our minimization. This gives a total number of 174,960 orbits
for our axisymmetric galaxy models.

We search for the best-fit galaxy model using the Latin
hypercube scheme outlined in Section 3 over three dimensions:
MBH, M

*/L, and M15, with a fixed inclination angle i= 70°,

estimated from the nuclear dust disk. Our hypercube consists of
2000 galaxy models drawn from a range MBH= [0, 4]× 109Me,
M*/L= [1.8, 2.8]Me/Le, and M15= [1, 13]× 1011Me. The
best-fit axisymmetric model parameters are listed in Table 2.
Our best-fit axisymmetric model of NGC 2693 prefers a ∼40%

larger MBH compared to the triaxial case, though the recovered
best-fit M*/L and dark matter halo are consistent with triaxial
modeling at the 1σ level. By construction, axisymmetric models
produce bisymmetric kinematic maps, meaning that the LOSVDs
are symmetric about the photometric major axis and antisym-
metric for points mirrored about the photometric minor axis. By
contrast, LOSVDs in triaxial models are only point-symmetric
about the origin. The apparent minor-axis rotation in the “Non-
bisymmetric Data Component” panel of Figure 7 therefore can be
fit by triaxial models but not axisymmetric models. Our best-fit
axisymmetric model fails to account for this component (lower
middle panel), while our best-fit triaxial model captures well the
full velocity features and produces featureless and nearly zero
residuals (lower right panel). Our best-fit axisymmetric model fails
to account for this component (middle, left panel), while our best-
fit triaxial model captures well the full velocity features and
produces featureless and nearly zero residuals (middle, right
panel).
We have run an additional test to verify that the non-

bisymmetric component of the kinematics show in Figure 7 is
due to a physical nonalignment between the photometric and

Table 2
Summary of Best-fit Galaxy Models for NGC 2693

Galaxy Parameter
Triaxial Orbit

Model
Axisymmetric
Orbit Model JAM Model

MBH [109Me] 1.7 ± 0.4 2.4 ± 0.6 2.9 ± 0.3
M*/L [Me/Le] 2.35 ± 0.07 2.27 ± 0.1 2.17 ± 0.03
M15 [10

11Me] -
+7.1 1.1

1.2 7.9 ± 1.3 4.7 ± 0.2

βz See caption.† See caption.† 0.07 ± 0.01
T 0.39 ± 0.04
Tmaj -

+0.09 0.03
0.04

Tmin -
+0.17 0.05

0.04

u -
+0.991 0.004

0.003

p 0.902 ± 0.009
q -

+0.721 0.010
0.011

θ (°) -
+66 3

4

f (°) 72 ± 3
ψ (°) -

+93.0 0.6
0.7

Note. For each parameter, we marginalize over the other dimensions and report
the 1σ uncertainties. The axisymmetric orbit models and JAM models have
fixed inclination of 70°. In orbit models, θ is the inclination angle in the oblate
axisymmetric limit (ψ = 90°, or equivalently p = 1), with θ = 90° being edge-
on and θ = 0° being face-on. †We measure βz in the orbit model as a function
of radius, shown in the bottom panel of Figure 6. The best-fit JAM value of
βz = 0.07 ± 0.01 is consistent with the range of βz values measured from this
best-fit model, with values ranging from βz = −0.27 at small radii to βz = 0.28
at large radii in both the triaxial and axisymmetric Schwarzschild models. Figure 6. (Top) Fraction of orbital weights in each orbital family for the best-fit

triaxial galaxy model. The orbital structure is dominated by short-axis tubes at
all radii, with a nonzero fraction of the weights occupied by long-axis tubes and
box orbits, both of which are present only in triaxial potentials. For
axisymmetric models, short-axis tubes are the only allowed orbital family.
(Middle) Velocity anisotropy b s sº 1 t r

2 2 profile of the best-fit triaxial model
(pink, solid line) and best-fit axisymmetric model (green, dashed line) of
NGC 2693. Inner orbits are tangential out to ∼1kpc and are increasingly
radially anisotropic at larger radii in both the axisymmetric and triaxial cases.
(Bottom) Anisotropy parameter b s s= - ( )1z z R

2, where σz and σR are the
velocity dispersions parallel to the rotation axis and in the radial direction, for
the best-fit axisymmetric and triaxial models described in the text.
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kinematic axes and cannot be simply “rotated away.” In this
test, instead of using the best-fit photometric PA 167.9° given
by the MGE (see Section 2.1), we inflate the photometric PA to
be 175°, a value that would minimize the magnitude of the non-
bisymmetric component. Using this inflated PA, we then refit
the MGE and recompute the non-bisymmetric component of
our input kinematics. Figure 8 compares the result for this test
(bottom panel) with that of our fiducial PA (top panel). While
the non-bisymmetric feature is indeed much-reduced for
PA= 175°, the MGE isophotes for this PA provide a
noticeably worse fit to the observed surface brightness profile
at both at large and small radii.

Lipka & Thomas (2021) recently argued that edge-on
axisymmetric models have a larger model flexibility than face-on
projections and thus can fit observational data better, biasing the
recovered inclination toward i∼ 90°. The rationale is that, in edge-
on models, the prograde and retrograde orbits have opposite
velocities along the line of sight and contribute uniquely to the
model’s LOSVDs, whereas in face-on models, the two sets of
orbits have negligible line-of-sight velocities, making them
virtually interchangeable and effectively reducing the number of
unique orbits used in superposition and minimization routines.
They reported a Δχ2∼ 30 bias, favoring edge-on inclinations. We
have performed a parameter search including inclination as a fourth
model parameter, sampling 1000 values from i= [68°, 89°] in the
hypercube. Our regression finds a best-fit value =  - 

+ i 87 .6 1 .8
0 .9, with

aΔχ2 between the lowest and highest inclinations of∼25, slightly
smaller than that reported in Lipka & Thomas (2021). Despite this
preference for edge-on inclinations in the axisymmetric models,
our best-fit MBH and M*/L barely change when we include
inclination as a free parameter: =  ´( ) M M2.4 0.5 10BH

9

and M*/L= (2.23± 0.1)Me/Le. These are both consistent within
the confidence intervals of the i= 70° results, so our results are
robust to choice of inclination angle.

5.2. Jeans Anisotropic Models

We further model the stellar kinematics of NGC 2693 as an
axisymmetric system using Jeans anisotropic modeling (JAM;
Cappellari 2008, 2020). JAM solves the Jeans equations
assuming a velocity ellipsoid that is aligned with a cylindrical
coordinate system (R, z, f) or a spherical coordinate system (R,
θ, f). We adopt a cylindrically aligned velocity ellipsoid, which
is flattened along the z-axis and is characterized by the
anisotropy parameter b s s= - ( )1z z R

2, where σz and σR are

Figure 7. Observed velocity map of the central 5″ × 7″ of NGC 2693 (upper
left), oriented such that the observed photometric major and minor axes are
horizontal and vertical, respectively, where the best-fit MGE PA is 167°. 9. We
decompose the map into a bisymmetrized component (upper right) and a non-
bisymmetric component (lower row), where bisymmetry means symmetry for
points mirrored about the photometric major axis and antisymmetry for points
mirrored across the photometric minor axis. The non-bisymmetric component
(normalized by measurement uncertainty) shows a prominent apparent minor-
axis rotation, a telltale sign of triaxiality. Since axisymmetric models can only
produce bisymmetric velocity maps by construction, the residuals from our
best-fit axisymmetric model (lower middle) show a pattern similar to that of the
non-bisymmetrized map. By contrast, our best-fit triaxial model (lower right) is
able to reproduce the full observed velocity structure, and the residuals scatter
randomly about zero.

Figure 8. Illustration of the nonalignment between the photometric PA and
kinematic features. The upper panel repeats the HST (black) and MGE model
isophotes (red) in Figure 1 and the non-bisymmetric component of the GMOS
data in Figure 7. The best-fit MGE PA of the photometric major axis is 167°. 9
in this fiducial case. In the lower panel, we inflate the MGE PA to 175° and plot
the resulting model fits and non-bisymmetric map assuming this PA. While the
non-bisymmetric velocity pattern is minimized, this inflated PA provides a
poor fit to the observed surface brightness profile.
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the velocity dispersions parallel to the rotation axis and in the
radial direction. JAM has the advantage of being computa-
tionally inexpensive, and previous studies generally have found
similar results between (axisymmetric) Schwarzschild models
and JAM (e.g., Seth et al. 2014; Krajnović et al. 2018b; Thater
et al. 2019).

In our model, the gravitational potential comes from the BH,
stars, and dark matter. The galaxy’s surface brightness from
Table 1 is deprojected into a 3D stellar mass density given an
inclination angle, i= 70°, and M

*

/L, while the dark matter halo
is parameterized by the logarithmic profile in Equation (1).
Thus, the free parameters in our model are: MBH, M

*/L, M15

(the dark matter mass enclosed within 15 kpc), and βz.
Given these parameters and the GMOS PSF, JAM predicts the
second moment, which we compare to the observed Vrms, with

s= +( )V Vrms
2 2 . We use the point-symmetrized V and σ

from the GMOS and Mitchell observations, excluding the
innermost Mitchell kinematics that spatially overlap with the
GMOS kinematics. We additionally exclude the outermost four
Mitchell bins as was done in the Schwarzschild models in
earlier sections.

The model parameters are optimized using Bayesian inference
and the nested sampling code Dynesty (Speagle 2020), which
estimates posteriors and evidences. We adopted a likelihood

cµ -( )L exp 22 where c s= S -( )D Mi i i i
2 2 2 and Di and Mi

are the observed and model Vrms, respectively, and σi is the Vrms

uncertainty for each spatial bin. When running with Dynesty,
we use 500 live points and stop the initial sampling stage once
reaching a threshold of 0.05, which is the log-ratio between the
current estimated Bayesian evidence and the remaining evidence.
The batch sampling stage is stopped when the fractional error on
the posterior reaches 0.02. We assume uniform priors, with all
free parameters sampled linearly. The best-fit values and 1σ
uncertainties are taken to be the median and 68% confidence
intervals of the posterior distributions, respectively.

The results are shown in Table 2, and a comparison between
the best-fit model and the observed Vrms is given in Figure 9.
The model reproduces the data well, with a reduced χ2 of 1.07.
Figure 9 also displays three models with MBH set to 0 Me,
2.1× 109 Me (the 3σ lower bound), and 3.7× 109 Me (the 3σ
upper bound), with M

*

/L, M15, and βz fixed to the values from
the best-fit JAM model in Table 2. The MBH= 0 Me case fails
to match the kinematics in the inner region, and further
demonstrates the need for a black hole in the galaxy potential.
The MBH and M*/L from the best-fit JAM model are consistent
within 1σ of the axisymmetric Schwarzschild model results in
Section 5.1, and βz falls within the range of values extracted
from the best-fit axisymmetric Schwarzschild model. The M15

value from JAM is lower than the Schwarzschild model result,
but it remains consistent at the 2σ level. Liepold et al. (2020)
found a similar result in the analysis of NGC 1453, with JAM
favoring a value of M15 half that inferred from the axisym-
metric Schwarzschild models.

We complete additional JAM runs to test assumptions made
during the modeling. In our fiducial model, we fix i= 70°,
which is the inclination angle inferred from the dust disk, but
we also test allowing i to be a free parameter. We find a
preference for i= 81°; however, all the angles for which the
MGE could be deprojected fall within the 3σ uncertainties. In
addition, we test using a spatially varying anisotropy, with a
parameter (βz,in) assigned to the MGE components with
s¢ < 3k ″ and another parameter (βz,out) attributed to the

remaining MGE components. We then examine a case where
βz,in corresponds to the MGE components with s¢ < 6k ″. These
choices are motivated by the previously run Schwarzschild
models, which suggest a change in the anisotropy between a
radius of ∼3″–6″. Next, we fit to only the GMOS data, which
extend to a radius of 3 4, and we assume a spatially constant
anisotropy. Finally, we test including the Mitchell kinematics
from the outer spatial bins during the fit, adopting a modified
MGE constructed using a dust mask with fewer central pixels
flagged, and increasing the number of live points and applying
different sampling thresholds in Dynesty. Even when
changing the model in these various ways, we nearly always
find consistent results at the 1σ level with the fiducial model.
The exception is when we fit to only the GMOS data with a
spatially constant βz; we find that M

*

/L is consistent within the
2σ uncertainties while the remaining parameters are in
agreement at the 1σ level with the fiducial model.
The above work assumed a cylindrically aligned velocity

ellipsoid, but we also examine using spherically aligned
JAM. In this case, we find a large anisotropy, with b = -1
s s =q( ) 0.39r

2 and an order-of-magnitude smaller MBH

with 3σ uncertainties that extend to 0 Me. We also fit
spherically aligned JAM to only the GMOS kinematics and
recover the same results. When repeating the run and fixing
β= 0.0, we find that MBH is constrained with a best-fit value of
3.4× 109Me. In this case, the MBH and remaining parameters
are consistent with the fiducial (cylindrically aligned) JAM,
given the 1σ uncertainties.
Despite the assumptions of cylindrically aligned JAM, the

inferred MBH and M*/L match (at the 1σ level) the results from
the more complex axisymmetric orbit model in Section 5.1
(Table 2). The enclosed dark matter mass from JAM is ∼40%
lower than that from the axisymmetric orbit model, but it is
within 2σ uncertainties of the orbit model. As Table 2 shows,
the uncertainties in the best-fit parameters from JAM tend to be
much smaller than those from the axisymmetric orbit model.
We continue to see a shift in the MBH compared to the best-fit
value from the triaxial Schwarzschild model, with the JAM

Figure 9. Line-of-sight rms velocity (Vrms) determined from the GMOS (blue
dots) and Mitchell (pink dots) IFS kinematics. The best-fit JAM model is
shown with black open squares. Also shown are three JAM models with MBH

fixed to 0Me (dotted line), 2.1 × 109 Me (the 3σ lower bound; dashed line),
and 3.7 × 109 Me (the 3σ upper bound; dashed line). The three models extend
over all radii, although only the model predictions within the central region are
plotted. Beyond ∼1″, it is difficult to distinguish between the models. The best-
fit model is a good match to the observations, and the model without an SMBH
underestimates Vrms at the nucleus.
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value being 75% more massive than the value predicted from
the triaxial modeling; see Section 6.2 for further discussion.

6. Discussion

6.1. Black Hole Scaling Relations

To place the NGC 2693 SMBH on the MBH–σ relation, we
use the luminosity-weighted velocity dispersion within Re,
σ= 296 km s−1, from Veale et al. (2017b) for NGC 2693. This
measurement was obtained from the same Mitchell IFS data
used in this paper. The mass of the NGC 2693 SMBH is within
15% of the value predicted by the mean MBH–σ relation in
McConnell & Ma (2013) and ∼5% above the relation in Saglia
et al. (2016); it is within the intrinsic scatter of both relations,
with values of 0.38 dex and 0.417 dex, respectively.

For the MBH–Mbulge relation, we use the total stellar mass
of NGC 2693 from our best-fit triaxial model, M

*

= 7.2×
1011Me, as the bulge mass.8 The NGC 2693 MBH is ∼25%
smaller than the value predicted by the mean MBH–Mbulge

relation of McConnell & Ma (2013) and ∼18% smaller than
the value predicted by the Saglia et al. (2016) relation. Again,
this SMBH is within the intrinsic scatter of both relations, with
values of 0.34 and 0.535 dex, respectively.

6.2. Comparison of Triaxial and Axisymmetric Models

There are few studies that compare MBH determination from
fully triaxial stellar dynamical models to axisymmetric models
of the same galaxy. The best-fit MBH for both M32 (van den
Bosch & de Zeeuw 2010) and NGC 1453 (Liepold et al. 2020;
Quenneville et al. 2022) were unchanged when relaxing the
assumption of axisymmetry, whereas MBH in NGC 3379
increased by a factor of ∼2 in the triaxial case (van den Bosch
& de Zeeuw 2010). We note that the mass modeling performed
for M32 and NGC 3379 did not simultaneously model the dark
matter halo of the two galaxies. In comparison, we make no
assumptions on the dark matter halo of NGC 2693, and instead
constrain the dark matter mass at 15 kpc directly, as was done
for NGC 1453 (Quenneville et al. 2022). Furthermore, the
triaxial code of van den Bosch et al. (2008) had an incorrect
scheme for mirroring orbits, which we fixed in the TriOS code
used for NGC 1453 and NGC 2693 here.

In the case of NGC 3998, Walsh et al. (2012) applied the
triaxial code of van den Bosch et al. (2008) and considered
different dark matter halos. The grid-based parameter search
did not allow for simultaneously varying all parameters in their
model. While NGC 3998 was not modeled in the axisymmetric
regime, the gas-dynamical measurement ofMBH disagreed with
the stellar-dynamical value by a factor of ∼4 (De Francesco
et al. 2006).

Recently, den Brok et al. (2021) applied the van den Bosch
et al. (2008) code to the brightest cluster galaxy PGC 046832 to
determine its intrinsic shape, central black hole mass, and
orbital composition. The galaxy has a unique velocity map,
exhibiting both a kinematically decoupled core and dramatic
twists in the velocity field, suggesting a non-axisymmetric
intrinsic shape. Their triaxial models prefer prolate galaxy
shapes in the inner 10″ of the galaxy, and oblate shapes beyond
10″, though these models only provide an upper bound on the

black hole mass of MBH 2× 109Me. While this disagrees
considerably with the results from their best-fit axisymmetric
models, which prefer MBH∼ 6× 109Me, it remains to be seen
if their triaxial result would change after the incorrect orbit
mirroring in the van den Bosch et al. (2008) code and other
issues discussed in Quenneville et al. (2022) are fixed.
In the case of NGC 2693, the best-fit orbit model in the

axisymmetric limit and the best-fit JAM model favor MBH that
is 40%–70% higher than the triaxial orbit model, but the
difference is within the ∼2σ confidence level (see Table 2).
Similar comparison studies are needed from more galaxies to
assess whether any systematic difference exists in MBH values
determined from different methods.

7. Summary

We have reported detection of an SMBH with
=  ´( ) M M1.7 0.4 10BH

9 at the center of the massive,
fast-rotating galaxy NGC 2693 targeted by the MASSIVE
survey. Using HST stellar light profiles and extensive IFS
kinematic data covering an FOV from ∼150 pc to 15 kpc as
constraints (Section 2), we have performed triaxial orbit
modeling with the TriOS code to determine the galaxy’s
internal stellar orbit structure, MBH, M

*/L, dark matter content,
and intrinsic 3D shape (Section 3). We modeled the
gravitational potential of NGC 2693 with six parameters and
performed a 6D Bayesian search using Latin hypercube
sampling of ∼10,000 galaxy models to find the model that
best matches our input data (Section 4).
Despite NGC 2693 exhibiting properties typically indicating

an intrinsic axisymmetric shape, we find the best-fit model to
be triaxial with T= 0.39± 0.04 and intrinsic axis ratios p= b/
a= 0.902± 0.009 and = = -

+q c a 0.721 0.010
0.011. We find that

triaxial models are needed to account for non-axisymmetric
features seen in the residuals of our accompanying axisym-
metric models (Figure 7). When limiting ourselves to
axisymmetry, we find a 40% larger best-fit black hole mass
of =  ´( ) M M2.4 0.6 10BH

9 from axisymmetric orbit
modeling, and a 75% larger best-fit black hole mass of

=  ´( ) M M2.9 0.3 10BH
9 from JAM modeling (Section 5);

both values are within the ∼2σ confidence level of MBH

determined from triaxial modeling (Table 2).
We have examined orbit flexibility in our galaxy models to

assess the possible effects of “generalized degrees of freedom”

(Ye 1998; Spiegelhalter et al. 2002) on parameter determina-
tions. Using a measure similar to that utilized by Lipka &
Thomas (2021) to estimate the effective number of parameters,
we find that our models in the axisymmetric limit exhibit
behavior similar to those of Lipka & Thomas (2021), in which
edge-on orientations tend to have higher model flexibility
(Section 5.1). Such varying model flexibility can be attributed
to varying degeneracy between prograde and retrograde short-
axis loop orbits as the line-of-sight approaches the symmetry
axis. For triaxial models, however, we find the model flexibility
to vary much less in the region around the best-fit models, and
our best-fit triaxial shape parameters change by less than 1σ in
a number of preliminary tests. It is possible that the additional
presence of box and long-axis tube orbits in triaxial potentials
has led to a weaker dependence of model flexibility on viewing
angles. We will report the full results in a subsequent paper.
This paper adds to only a handful of other stellar dynamical

modeling studies not limited to axisymmetric galaxy shapes
(Section 6.2). Most of the remaining galaxies in the MASSIVE

8 This is 15% larger than the stellar mass estimated from the ATLAS3D

MK − stellar mass relation (Cappellari et al. 2013), using a K-band absolute
magnitude of MK = −25.76 (Ma et al. 2014).
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survey exhibit more prominent kinematic and photometric
twists and less rotation compared to NGC 2693, further
providing evidence that massive early-type galaxies have
triaxial intrinsic shapes. More stellar dynamical measurements
beyond the axisymmetric limit will elucidate whether the
systematic differences in MBH seen for NGC 2693 in this paper
is a common occurrence.
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