How much is that black hole in the window? (Robustness testing in Stellar Dynamical Modeling)

Emily Liepold, postdoc @ UC Berkeley Astronomy emilyliepold@berkeley.edu

- **Berkeley Big BH Bunch:**
	- **Emily Liepold**
	- **Jacob Pilawa**
	- **Matthew Quenneville**
		- **Chung-Pei Ma**

The context of **our science Overview of how we do our science The robustness problem in stellar dynamical modeling (and our attempts to address that problem) Case study: The Berkeley group's approach**

SMBH masses are linked to galaxy properties

- Supermassive black hole masses are *correlated* with galaxy properties through coevolution
- The form of the correlation constrains models for coevolution
- Precise constraints on those correlations *require* precise measurements of individual SMBH masses and galaxy parameters

High-precision stellar dynamical SMBH measurement is now possible

Stellar dynamical modeling

- Idea: stellar motions are related to the potential they move within
	- Higher enclosed mass \approx Higher stellar velocity
	- $Measure$ stellar motions \rightarrow Infer mass distribution

But a complication! We only measure velocity along line of sight: Or very misaligned and 3D velocity is *much* larger?

-
- Is orbit aligned with LOS and measured velocity is 3D velocity?
	-

Stellar dynamical modeling

Jeans modeling:

Assume:

Specific form for connection between $\rm{v_{LOS}}$ and $\rm{v_{3D}}$

Schwarzschild orbit modeling:

- Model full 3D orbit structure and find the $\rm v_{3D}$ distribution which is most consistent with $\rm v_{LOS} .$
- An extra quirk: the 3D galaxy shape impacts allowed orbits and allowed 3D orbit structure. Very
	-

general shapes → very general orbit structures. (The most general and flexible models are *triaxial Schwarzschild models)*

V3D

Propose a potential

Propose a potential

Integrate $\mathcal{O}(10^5)$ representative stellar orbits

Propose a potential

Integrate $\mathcal{O}(10^5)$ representative stellar orbits

Superimpose orbits to fit observations

Propose a potential

Integrate $\mathcal{O}(10^5)$ representative stellar orbits

Superimpose orbits to fit observations

Try to find better models

Propose a potential

Integrate $\mathcal{O}(10^5)$ representative stellar orbits

Schwarzschild+79 (repeat $\mathcal{O}(10^4)$ times) \sim Schwarzschild+93

Superimpose orbits to fit observations

Try to find better models

Propose a potential

Integrate $\mathcal{O}(10^5)$ representative stellar orbits

Schwarzschild+79 (repeat $\mathcal{O}(10^4)$ times) \sim Schwarzschild+93

Try to find better models

10,000 models

X

10 CPU-hours

Propose a potential

Integrate $\mathcal{O}(10^5)$ representative stellar orbits

Schwarzschild+79 (repeat $\mathcal{O}(10^4)$ times) \sim Schwarzschild+93

Superimpose orbits to fit observations

Try to find better models

X

10 CPU-hours

Model Search using Gaussian Process regression and iterative search: •Run uninformed set of models *χ*2 • Model χ^2 surface with GP 0.6 Δ*χ*²• Populate low $\Delta \chi^2$ volume •Rinse and Repeat 0.2 **Dynamic Nested Sampling:** •Use GP Surrogate model Ω •Sample parameter space w/ Dynesty

Model Search using Gaussian Process regression and iterative search: •Run uninformed set of models 0.8 *χ*2 • Model χ^2 surface with GP 0.6 Δ*χ*²• Populate low $\Delta \chi^2$ volume •Rinse and Repeat 0.2 **Dynamic Nested Sampling:** •Use GP Surrogate model •Sample parameter space w/ Dynesty

Model Search using Gaussian Process regression and iterative search: •Run uninformed set of models 0.8 *χ*2 • Model χ^2 surface with GP 0.6 Δ*χ*²• Populate low $\Delta \chi^2$ volume •Rinse and Repeat 0.2 **Dynamic Nested Sampling:** •Use GP Surrogate model •Sample parameter space w/ Dynesty

Model Search using Gaussian Process regression and

iterative search: • Run motormed set of model • Model surface with General School and Court and Co o Pop •Rinse and Repeat **Dynamic Nested Sampling:** •Use GP Surrogate model •Sample parameter space w/ Dynesty *χ*2 Δ*χ*²

Given observations of a galaxy with a set of physical parameters, are our measurements both accurate and precise?

Problem 1:

Triaxial orbit modeling is least assumption-laden stellar dynamical scheme.

-
- Assumptions on galaxy shape, symmetry, orbital structure *may* be linked to biases.
- \rightarrow We can't compare our models against more sophisticated / comprehensive models
- No* robust framework exists for constructing artificial galaxy data for *triaxial* galaxies
	-

Problem 2:

with central SMBHs

→ We can't* test our models against reference models

The robustness problem in stellar dynamical modeling

In nonlinear models, the number degrees of freedom *may* vary throughout the

parameterspace

Lipka+Thomas explore number of generalized DOFs in axisymmetric orbit models

Are orbit models inherently biased? (Lipka + Thomas 2021)

Idea:

- 1. Obtain real galaxy data
- 2. Fit real data with a triaxial orbit model with parameters *i*
- 3. Obtain predictions for observations from \mathscr{P}_i and nudge those predictions with random noise to produce synthetic observations *i i*,*j*
- 4. Feed synthetic observations into modeling and inference
- 5. Repeat for many i and j

Use triaxial Schwarzschild models to create mock galaxy data from real galaxy data

The resulting models are *equilibrium*, with *consistent kinematics* and *potential*

Probably not! (Pilawa, Liepold, Ma 2024)

•Ran 5 models with 5 noise realizations apiece

Probably not! (Pilawa, Liepold, Ma 2024)

No apparent consistent bias in mass or shape

Input M_{15} Input M/L $(10^{11} M_{\odot})$ $(10^9 M_{\odot})$ (M_{\odot}/L_{\odot}) -2.23 $O - 5.5$ 2.31 -243 \sum 10.2 2.25 $-$ 5.5 2.28 \bullet 6.0 0.2 -0.2 0.0 -5 $(M^*/L)^{\text{recov.}} - (M^*/L)^{\text{input}}$ $M_{15}^{\text{recov.}}-M_{15}^{\text{input}}$ $M_{\rm BH}^{\rm recov.}-M_{\rm BH}^{\rm input}$ (M_{\odot}/L_{\odot}) $(10^{11} M_{\odot})$ $(10^9 M_{\odot})$ Input T_{mai} Input T Input T_{mir} \bullet 0.07 \bullet 0.04 \bullet 0.09 \bullet 0.06 \bullet 0.26 -0.05 \bullet 0.09 $0.2\,$ $0.2\,$ $-0.2\,$ 0.0 -0.2 0.0 $0.2\,$ -0.2 0.0 $T^{\text{recov.}} - T^{\text{input}}$ $T_{\rm maj}^{\rm recov.}-T_{\rm maj}^{\rm input}$ $T_{\rm min}^{\rm recov.}-T_{\rm min}^{\rm input}$

Black hole masses and galaxy properties are linked

Triaxial Orbit modeling is the most general stellar dynamical modeling method

But it's quite challenging to know if the answers are correct

(Though our tests suggest that they probably are)

And our iterative scheme seems to reliably converge on reasonable answers