Big Galaxies in 3D KCWI Measurements Reveal the Intrinsic Shapes and Central Black Holes of the Most Massive Galaxies

Emily Liepold, UC Berkeley Astronomy emilyliepold@berkeley.edu (slides at emilyliepold.com/today) Berkeley Big BH Bunch: Emily Liepold Matthew Quenneville Jacob Pilawa Chung-Pei Ma

Big Galaxies are intriguing

- Extremely massive galaxies ($M_* \gtrsim 5 \times 10^{11} M_{\odot}$)
 - Are rare (~200 within 100 Mpc)
 - Are the endpoint of mergers + evolution?
 - Sometimes (but not always) the brightest galaxies in their groups or clusters
 - Host Ultramassive Black Holes ($M_{\rm BH} \gtrsim \times 10^9 M_{\odot}$)

Liepold + Ma 2024

given mass

Idea:

Relative velocities *doppler-shift* a star's spectrum.

Idea:

Relative velocities *doppler-shift* a star's spectrum.

- A distribution of relative velocities will lead to a distribution of doppler-shifts

Idea:

Relative velocities *doppler-shift* a star's spectrum.

The motions of stars are related to the mass distribution of the galaxy

- A *distribution* of relative velocities will lead to a *distribution* of doppler-shifts

Idea:

Relative velocities *doppler-shift* a star's spectrum.

The motions of stars are related to the mass distribution of the galaxy What do we need?

- (To observe the doppler shifts) Spectra!
- High S/N (To measure shape of the velocity distribution: 8 moments!)
- High spatial resolution (To probe the area dominated by the SMBH)
- Large spatial coverage (To probe the area dominated by dark matter)
- And a bunch of modelling!

- A *distribution* of relative velocities will lead to a *distribution* of doppler-shifts

Idea:

Relative velocities *doppler-shift* a star's spectrum.

The motions of stars are related to the mass distribution of the galaxy What do we need?

- (To observe the doppler shifts) Spectra!
- High S/N (To measure shape of the velocity distribution: 8 moments!)
- High spatial resolution (To probe the area dominated by the SMBH)
- Large spatial coverage (To probe the area dominated by dark matter) Not this talk!
- And a bunch of modelling!

- A *distribution* of relative velocities will lead to a *distribution* of doppler-shifts

Idea:

Relative velocities *doppler-shift* a star's spectrum.

The motions of stars are related to the mass distribution of the galaxy What do we need?

- Spectra!
- High S/N To measure shar

- And a bunch of modelling!

- A *distribution* of relative velocities will lead to a *distribution* of doppler-shifts

- We observed M87 with KCWI during four observing runs from May 2020 - April 2022.
- 62 pointings were observed, each corresponding to a $20.4'' \times 33''$ FOV with $0.3'' \times 1.4''$ spatial pixels
- 13hr on target, 2.8hr on sky
- The full FOV spans about 23 kpc along the photometric major axis and 28 kpc along the minor (11.6 square arcmin in total!)

An

sh 2023

An

S/N ~ 200/A

 $\operatorname{ary})$

S/N ~ 100/Å

sh 2023

photometric major axis

The rotation is *misaligned* with the photometric major axis

Liepold, Ma, Walsh 2023

The velocity dispersion rises quickly towards the center!

First simultaneous measurement of M87's **BH mass and 3D shape**

5.37 x 10⁹ M_☉ **Black Hole Mass**

First simultaneous measurement of M87's **BH mass and 3D shape**

5.37 x 10⁹ M_☉ **Black Hole Mass**

Average axis ratios

1:0.85:0.72

First simultaneous measurement of M87's **BH mass and 3D shape**

Black Hole Mass $5.37 \times 10^9 M_{\odot}$

Average axis ratios

1:0.85:0.72

First simultaneous measurement of M87's **BH mass and 3D shape**

Liepold, Ma, Walsh 2023

Thanks to observations from Hubble and the Keck Observatory, astronomers were able to generate a 3D model of the galaxy M87.

By tracking the motion of stars around the galaxy's center, they determined that the galaxy is potato-shaped:

go.nasa.gov/3MFV16L

0.00.00.00 M^*/L M_{BH} T_{maj} T_{min} (M_{\odot}/L_{\odot}) $(10^9 M_{\odot})$

KCWI Lessons Learned LSF, PCA, and Mosaicing

1. The KCWI large-slicer linespread function is slit-limited and non-Gaussian!

> Instead, Top hat convolved with Gaussian

This is important for determining accurate velocity distributions

KCWI Lessons Learned LSF, PCA, and Mosaicing

2. Use PCA sky model for residual sky corrections

Include PCA components as additive terms in spectral fits

This allows for robust kinematics in sky-dominated regions

KCWI Lessons Learned LSF, PCA, and Mosaicing

3. Use Gemini **gemcube / nifcube** to drizzle + mosaic science frames

We rearrange KCWI datacubes to have NIFS-like structure, then use their established tools

This allows for robust mosaicing + drizzling without re-implementing those algorithms

Noving Forward: Holmbe

- •BCG of Abell 85
- Largest known core! (~3 kpc)
- •Faintest known Central SB! $(\mu_V = 20 \text{mag}/\text{arcsec}^2)$
- •The size of an ETG's core is correlated with the black hole mass
- •The central surface brightness is anticorrelated with black hole mass
- •(15x further away than M87)

walsh 2024

Moving Forward: Holmberg 15A Liepold, Ma, Walsh 2024 (Forthcoming)

- We observed H15 with KCWI small and large slicers during five observing runs from Nov 2018 -Nov 2021
- 2.5 hours on target with small slicer
- 9.5 hours on target with large slicer in 10 pointings
- 3.5 hours on sky
- The full FOV spans about 100 kpc along the photometric major and minor axes

Sky-dominated

20" ~ 20 kpc ~ 65,000 ly

(Arbitrary Offset Normalized Flux

Liepold, Ma, Walsh 2024 Moving Forward: Holmberg 15A (Forthcoming)

Measurements of 8 velocity moments in sky-dominated regions!

> **Only possible with** KCWI!

Spoiler for paper: H15A has the largest SMBH from dynamical methods (and H15A is triaxial)

- •KCWI / KCRM enables stellar kinematic measurements wellbelow sky level
- •This makes SMBH measurements in galaxies with large diffuse cores possible (where ultramassive BHs live!)
- Ongoing efforts to model more w/ diffuse cores!
- New modeling schemes allow measurements of triaxial 3D shapes simultaneously with SMBH mass

