N87 and Beyond **Recent Progress in Stellar Dynamical Measurements of** (ultramassive) Black Hole Masses

Emily Liepold, UC Berkeley Astronomy emilyliepold@berkeley.edu (slides at emilyliepold.com/today)

Berkeley Big BH Bunch: Emily Liepold Matthew Quenneville Jacob Pilawa Chung-Pei Ma

How to find supermassive black holes using stellar dynamics

How to measure supermassive black holes using stellar dynamics

Supermassive black holes using stellar dynamics

How to measure supermassive black holes using stellar dynamics

Big BHs are intriguing

- Ultramassive BHs are
 - PTA sources?
 - EHT sources?
 - Endpoint of mergers + evolution?

Big BHs are intriguing

- Ultramassive BHs are
 - PTA sources?
 - EHT sources?
 - Endpoint of mergers + evolution?

Big BHs are booming

27 from stellar or gas with $M_{\rm BH} \gtrsim 10^9 M_{\odot}$ 4 with $M_{\rm BH} \gtrsim 10^{10} M_{\odot}$

Big BHs are intriguing

- Ultramassive BHs are
 - PTA sources?
 - EHT sources?
 - Endpoint of mergers + evolution?

Big BHs are booming

27 from stellar or gas with $M_{\rm BH} \gtrsim 10^9 M_{\odot}$ 4 with $M_{\rm BH} \gtrsim 10^{10} M_{\odot}$

Boizelle+21: NGC 315 Quenneville+22: NGC 1453 **Pilawa+22: NGC 2693** Liepold+23: M87 **De Nicola+24: NGC 708 Dominiak+24: NGC 997, and 1684** Mehrgan+24: NGCs 1407, 4751, 5328, 5516, 7619 Pilawa+soon, NGC 57 Liepold+soon, Holmberg 15A

12 from past 3 years! **8** this year! (Plus more in the pipeline)

Big BHs are uncommon

Problem:

The biggest BHs live in the biggest galaxies

Big Galaxies are rare

~200 galaxies within 100 Mpc with $M_* \gtrsim 10^{11.5} M_{\odot} \rightarrow M_{\rm BH} \gtrsim 10^9 M_{\odot}$

~20 galaxies within 100 Mpc with $M_* \gtrsim 10^{12} M_{\odot} \rightarrow M_{\rm BH} \gtrsim 3 \times 10^9 M_{\odot}$

~ 20 within 100 Mpc

 ~ 200 within 100 Mpc

How to find SNBHS **Different methods for different galaxies**

Shadow imaging

Gas dynamics

Reverberation mapping

- Individual stellar orbits (S2, etc around Sga*; UCLA team+, GRAVITY+)
 - (Sga* and M87; EHT)
- (CO or ionized gas; e.g. Walsh+, Boizelle+, Barth+, WISDOM team, numerous others)
- Integrated stellar motion (Galaxies with stars + resolved SOI)
 - (AGN; e.g., Bentz+)
- Single Epoch emission line width (AGN; e.g., Greene + Ho 2005)

How to find SNBHs **Different methods for different galaxies**

Shadow imaging

Gas dynamics

Reverberation mapping

- Individual stellar orbits (S2, etc around Sga*; UCLA team+, GRAVITY+)
 - (Sga* and M87; EHT)
- (CO or ionized gas; e.g. Walsh+, Boizelle+, Barth+, WISDOM team, numerous others)
- Integrated stellar motion (Galaxies with stars + resolved SOI)
 - (AGN; e.g., Bentz+)
- Single Epoch emission line width (AGN; e.g., Greene + Ho 2005)

Idea:

Relative velocities *doppler-shift* a star's spectrum.

Idea:

Relative velocities *doppler-shift* a star's spectrum.

A distribution of relative velocities will lead to a distribution of doppler-shifts

Idea:

Relative velocities *doppler-shift* a star's spectrum. The motions of stars are related to the mass distribution of the galaxy

- A *distribution* of relative velocities will lead to a *distribution* of doppler-shifts

Idea:

Relative velocities *doppler-shift* a star's spectrum.

The motions of stars are related to the mass distribution of the galaxy What do we need?

- (To observe the doppler shifts) Spectra!
- High S/N (To measure the velocity distributions precisely)
- High spatial resolution (To probe the area dominated by the SMBH)
- Large spatial coverage (To probe the area dominated by dark matter)
- And a bunch of modelling!

- A *distribution* of relative velocities will lead to a *distribution* of doppler-shifts

The MASSIVE Survey

MASSIVE is a...

- Volume-limited (D < 108 Mpc, $\delta > -6^\circ$)
- Mass-limited ($M_{K} < -25.3; M_{*} \gtrsim 10^{11.5} M_{\odot}$)

galaxies within ~100 Mpc

19 primary MASSIVE papers so far – Stellar populations, Molecular Gas SMBH mass measurements...

Jens Thomas, Melanie Veale, Irina Ene, Viraj Pandya, Charles Goullaud, Matthew Quenneville, Emily Liepold, Jacob Pilawa, Silvana Andrade Delgado and others)

Ma+2014

- **Photometric** and **Spectroscopic** Survey of ~100 of the most massive
- kinematics, Stellar kinematics, Ionized gas kinematics, HST + CFHT photometry,
- (And lots of people! Chung-Pei Ma, Jenny Greene, Jonelle Walsh, Nicholas McConnell,

The MASSIVE Survey

MASSIVE is a...

• Vo	There are lots of other f
	massive BHs w/ ste
• Ma	See University of Vienna
	Leiden team (Thomas+),
Photon	(Valluri
galaxies	s within ~100 Mpc

19 primary MASSIVE papers so far — Stellar populations, Molecular Gas kinematics, Stellar kinematics, Ionized gas kinematics, HST + CFHT photometry, **SMBH mass measurements**...

(And lots of people! Chung-Pei Ma, Jenny Greene, Jonelle Walsh, Nicholas McConnell, Jens Thomas, Melanie Veale, Irina Ene, Viraj Pandya, Charles Goullaud, Matthew Quenneville, Emily Liepold, Jacob Pilawa, Silvana Andrade Delgado and others)

Ma+2014

olks also looking at ellar dynamics!: team (van de van+), and Michigan team i+)

of the most massive

- We observed M87 with Keck Cosmic Web Imager (KCWI) during four observing runs from May 2020 -April 2022.
- 62 pointings were observed, each corresponding to a $20.4'' \times 33''$ FOV with $0.3'' \times 1.4''$ spatial pixels
- This is an integral field unit, yielding a distinct spectrum at each spatial pixel.
- The full FOV spans about 23 kpc along the photometric major axis and 28 kpc along the minor (11.6 square arcmin in total!)

photometry

The rotation is *misaligned* with the photometry

Liepold, Ma, Walsh 2023

The velocity dispersion rises quickly towards the center!

East - West (arcsec)

JWST observations (a sneak peak)

All pixels btw 0.185" and 0.315" in Gebhardt+11 (17-29 pc)

One 0.05" x 0.05" spaxel with JWST

(4.5pc)

Cycle 1 GO 2228: PI Jonelle Walsh, Co-l's Greene, Liepold, Ma

NIRSPEC image @ 2.3µm

JWST observations (a sneak peak)

Cycle 1 GO 2228: PI Jonelle Walsh, Co-I's Greene, Liepold, Ma

One 0.05" x 0.05" spaxel with JWST

(4.5pc)

JWST observations (a sneak peak)

Cycle 1 GO 2228: PI Jonelle Walsh, Co-l's Greene, Liepold, Ma

The JWST spectrum

One 0.05" x 0.05" spaxel with JWST

(4.5pc)

JWST observations (a sneak peak)

Wavelength (μ m)

Cycle 1 GO 2228: PI Jonelle Walsh, Co-l's Greene, Liepold, Ma

The JWST spectrum

Stay tuned for Cycle 3 GO 5716! "Precision Tests of Black Hole Mass Measurements in Massive Elliptical Galaxies" PI Jonelle Walsh, Co-I's Barth, Boizelle, Cohn, Liepold, Ma

when a hand have been and the second of the

2.6 2.8 3.0

How to find supermassive black holes using stellar dynamics

How to measure supermassive black holes using stellar dynamics

How to measure SNBHs Stellar dynamical modelling

- Virial estimate SMBH using stellar dispersion + Virial Theorem (E.g., Cappellari+2006)
- Jeans estimate SMBH using Jeans Equation (implemented in JAM; Cappellari+2020)
- Orbit / Schwarzschild estimate SMBH by integrating and superimposing orbits

Schwarzschild+79 Schwarzschild+93 van den Bosch+08

Propose a potential

Schwarzschild+79 Schwarzschild+93 van den Bosch+08

Propose a potential

Integrate $\mathcal{O}(10^5)$ representative stellar orbits

Schwarzschild+79 Schwarzschild+93 van den Bosch+08

Propose a potential

Integrate $\mathcal{O}(10^5)$ representative stellar orbits

Schwarzschild+79 Schwarzschild+93 van den Bosch+08

Propose a potential

Integrate $\mathcal{O}(10^5)$ representative stellar orbits

Schwarzschild+79 Schwarzschild+93 van den Bosch+08

Try to find better models

(repeat $\mathcal{O}(10^4)$ times)

Propose a potential

Integrate $\mathcal{O}(10^5)$ representative stellar orbits

Schwarzschild+79 Schwarzschild+93 van den Bosch+08

Try to find better models

(repeat $\mathcal{O}(10^4)$ times)

10 CPU-hours

Propose a potential

Integrate $\mathcal{O}(10^5)$ representative stellar orbits

Try to find better models

10,000 models

O(100,000) CPU-hours...

How to really measure SMBHs

(Now we call it **TriOS**)

- 1. Accurate orbit composition + symmetry in axisymmetric and triaxial galaxies (Liepold+20, Quenneville+21, Quenneville+22)
- 2. Code efficiency improvements (~order of magnitude speedups!) (Quenneville+21, Quenneville+22)
- 3. Model sampling + parameter inference improvements!
 - (~couple order of magnitude speedups)
 - (Quenneville+22, Pilawa+22, Liepold+23, Pilawa+24)
- 4. Robustness tests with mock galaxy data! (Pilawa+24)

We've substantially modified the triaxial orbit code of van den Bosch+08

5.37 x 10⁹ M⊙ **Black Hole Mass**

5.37 x 10⁹ M_☉ **Black Hole Mass**

Inner Stellar Mass-to-light 8.65 M⊙ / L⊙,v

(With M/L gradient!)

5.37 x 10⁹ M_☉ **Black Hole Mass**

Inner Stellar Mass-to-light

8.65 M_☉ / L_☉,v (With M/L gradient!)

Average axis ratios

1:0.85:0.72 🐖

Space potato? 🍋

Thanks to observations from Hubble and the Keck Observatory, astronomers were able to generate a 3D model of the galaxy M87.

By tracking the motion of stars around the galaxy's center, they determined that the

galaxy is potato-shaped: go.nasa.gov/3MFV16L

x 10⁹ M⊙

M⊙ / L⊙,v **I/L gradient!)**

Average axis ratios

1:0.85:0.72 🐖

$5.37 \times 10^9 M_{\odot}$ **Black Hole Mass**

Inner Stellar Mass-to-light 8.65 M_☉ / L_☉,v

(With M/L gradient!)

Average axis ratios

1:0.85:0.72

East – West

• The kinematic axis is misaligned from the photometric axes

East – West

- The kinematic axis is misaligned from the photometric axes
- The jet is almost perpendicular to the kinematic axis on the sky

East – West

- The kinematic axis is misaligned from the photometric axes
- The jet is almost perpendicular to the kinematic axis on the sky
- The mean stellar L vector from 80" to 150" is $(19 \pm 9)^{\circ}$ from the jet! (In 3D)

East – West

- The kinematic axis is misaligned from the photometric axes
- The jet is almost perpendicular to the kinematic axis on the sky
- The mean stellar L vector from 80" to 150" is $(19 \pm 9)^{\circ}$ from the jet! (In 3D)
- Apparent alignment between, BH Spin, Jet axis, Stellar angular momentum, Virgo's long axis

East – West

Ongoing Efforts + Connections

- Many MASSIVE galaxies still to model (with Triaxial Schwarzschild method) Keep an eye out for NGC57 (Pilawa+24b) and NGC315 (Pilawa+24c)
- Ultra-MASSIVE galaxies with KCWI
 - Keep an eye out for Holmberg 15A (upcoming Liepold+24b)
- PTA sources? implications for identifying continuous signals
 - with NANOGrav GW strain
- Massive nearby SMBH are EHT targets
- Also check out Liepold+24a MASSIVE stellar mass distribution is consistent