Supermassive Black Hole Discovery and Measurement with Triaxial Schwarzschild Modelling

Emily Liepold, UC Berkeley
emilyliepold@berkeley.edu
slides at emilyliepold.com/today

The Big Picture

Triaxial Schwarzshild modelling!

First results! NGC1453 and NGC2693

M87

Motivation: What are we looking at?

The MASSIVE Survey targets MASSIVE galaxies with MASSIVE black holes

(McConnell+Ma 2013)

Motivation: What are we looking at?

The MASSIVE Survey targets MASSIVE galaxies with MASSIVE black holes

(McConnell+Ma 2013)

- These galaxies often have kinematic misalignments
- Kinematic misalignments strongly suggest a triaxial intrinsic shape (not axisymmetry!)

(Ene+20)

Motivation: Why do we care about the shape?

Shape of $\rho \rightarrow$ Shape of $\phi \rightarrow$ Symmetries of $\Phi \rightarrow$ Conserved quantities and allowed orbits

Symmetry		Conserved Quantity	Orbits
Spherical	$\frac{d \Phi}{d \Omega}=0$	(E, \vec{L})	Rosettes in fixed planes
Axisymmetry	$\frac{d \Phi}{d \phi}=0$	$\left(E, L_{2}, l_{3}\right)$	Loops about symmetry axis
Triaxiality	Eh...	$\left(E, l_{2}, l_{3}\right)$	It's complicated...

Some orbits in triaxial potentials are strange!

Loop Orbits Box Orbits

Some orbits in triaxial potentials are strange!

Loop Orbits Box Orbits

Some orbits in triaxial potentials are strange!

Loop Orbits Box Orbits

The Big Picture

Triaxial Schwarzshild modelling!

First results! NGC1453 and NGC2693

M87

Schwarzschild Orbit Modelling

Strategy:

1. Propose a (triaxial) stellar density distribution
2. Integrate representative orbits that span the phase space
3. Superimpose those orbits such that (1) is reproduced

Schwarzschild Orbit Modelling

Strategy:

1. Propose a (triaxial) stellar density distribution
2. Integrate representative orbits that span the phase space
3. Superimpose those orbits such that (1) is reproduced
4. Choose a superposition that also fits a set of kinematic observables

Schwarzschild Orbit Modelling

Strategy:

1. Propose a (triaxial) stellar density distribution
2. Integrate representative orbits that span the phase space
3. Superimpose those orbits such that (1) is reproduced
4. Choose a superposition that also fits a set of kinematic observables
5. Repeat (1-4) with a bunch of different mass models

The TriOS Triaxial Orbit Superposition Code

(Spawned from earlier code from van den Bosch+ 2008)
A fortan-based code for Schwarzschild orbit modelling in triaxial stellar potentials.

Model includes BH, stars, and dark matter halo:

$$
\Phi=\Phi_{B H}+\Phi_{*}+\Phi_{D M}
$$

Stellar kinematics (LOSVDs) described by Gauss-Hermite expansion with $y=(v-V) / \sigma$:

$$
f(v)=\frac{e^{-\frac{v^{2}}{2}}}{\sqrt{2 \pi \sigma^{2}}}\left[1+\sum_{m=3}^{n} h_{m} H_{m}(y)\right]
$$

2D (projected) and 3D (intrinsic) mass distributions are constrained for self-consistency.

Efficient Sampling for Triaxial Modelling

Each TriOS model gives a χ^{2} value for a single point in the parameter-space

- We need to search over $M_{B H}, M / L$ (1 or 2 parameters), shape (3 parameters), and halo (1 or 2 parameters) - at least 6-8 dimensions. (Grid Searches are inefficient)

Each TriOS model gives a χ^{2} value for a single point in the parameter-space

- We need to search over $M_{B H}, M / L$ (1 or 2 parameters), shape (3 parameters), and halo (1 or 2 parameters) - at least 6-8 dimensions. (Grid Searches are inefficient)
- This is expensive. Each model evaluation takes 10-30 CPU hours. (Highly iterative searches are impractical)

Each TriOS model gives a χ^{2} value for a single point in the parameter-space

- We need to search over $M_{B H}, M / L$ (1 or 2 parameters), shape (3 parameters), and halo (1 or 2 parameters) - at least 6-8 dimensions. (Grid Searches are inefficient)
- This is expensive. Each model evaluation takes 10-30 CPU hours. (Highly iterative searches are impractical)
- As data improves, confidence volumes shrink with $\sim(\text { (Number of Constraints) })^{-D / 2}$

Efficient Sampling for Triaxial Modelling

Our Strategy (inspired by Bayesian Optimization and nested sampling):

1. Sparsely populate the space

Efficient Sampling for Triaxial Modelling

Our Strategy (inspired by Bayesian Optimization and nested sampling):

1. Sparsely populate the space
2. Use Gaussian Process regression to model the χ^{2} landscape

Efficient Sampling for Triaxial Modelling

Our Strategy (inspired by Bayesian Optimization and nested sampling):

1. Sparsely populate the space
2. Use Gaussian Process regression to model the χ^{2} landscape
3. Populate regions that are likely to be useful

Efficient Sampling for Triaxial Modelling

Our Strategy (inspired by Bayesian Optimization and nested sampling):

1. Sparsely populate the space
2. Use Gaussian Process regression to model the χ^{2} landscape
3. Populate regions that are likely to be useful

- For our triaxial searches, we've used this customized routine and only needed $3000-5000 \sim 4^{6}$ models across 3 iterations for 6 parameters. ($\sim 80,000$ CPU-hours)

Efficient Sampling for Triaxial Modelling

Our Strategy (inspired by Bayesian Optimization and nested sampling):

1. Sparsely populate the space
2. Use Gaussian Process regression to model the χ^{2} landscape
3. Populate regions that are likely to be useful

- For our triaxial searches, we've used this customized routine and only needed $3000-5000 \sim 4^{6}$ models across 3 iterations for 6 parameters. ($\sim 80,000$ CPU-hours)
- For a reasonable-resolution grid search (10 pt per dimension), we'd need $\mathrm{O}\left(10^{6}\right)$ models - 20,000,000
 CPU-hours!

Efficient Sampling for Triaxial Modelling

Our Strategy (inspired by Bayesian Optimization and nested sampling):

1. Sparsely populate the space
2. Use Gaussian Process regression to model the χ^{2} landscape
3. Populate regions that are likely to be useful

- For our triaxial searches, we've used this customized routine and only needed $3000-5000 \sim 4^{6}$ models across 3 iterations for 6 parameters. ($\sim 80,000$ CPU-hours)
- For a reasonable-resolution grid search (10 pt per dimension), we'd need $\mathrm{O}\left(10^{6}\right)$ models - 20,000,000
 CPU-hours!
- (We've been averaging 1.5M CPU-hours / year on Expanse at SDSC)

The Big Picture
 Triaxial Schwarzshild modelling!

First results! NGC1453 and NGC2693

M87

The Big Picture

Triaxial Schwarzshild modelling!

First results! NGC1453 and NGC2693

M87

M87* has a long history

M87* has a long history

Our KCWI Observations

- We observed M87 with Keck Cosmic Web Imager (KCWI) during four observing runs from May 2020 - April 2022.
- This is an integral field unit, yielding a distinct spectrum at each spatial pixel.

- We observed M87 with Keck Cosmic Web Imager (KCWI) during four observing runs from May 2020 - April 2022.
- This is an integral field unit, yielding a distinct spectrum at each spatial pixel.
- 62 pointings were observed, each corresponding to a $20.4^{\prime \prime} \times 33^{\prime \prime}$ FOV with $0.3^{\prime \prime} \times 1.4^{\prime \prime}$ spatial pixels
- The full FOV spans about 250 " along the photometric major axis and 300" along the minor (11.6 square arcmin in total!)

M87's Stellar Velocity Field

M87's Stellar Velocity Dispersion

M87 Property (units)	Inferred value
Black hole mass $M_{\mathrm{BH}}\left(10^{9} M_{\odot}\right)$	$5.37_{-0.25}^{+0.37} \pm 0.22$
Inner $M^{*} / L\left(V\right.$-band; $\left.M_{\odot} / L_{\odot}\right)$	$8.65_{-0.15}^{+0.10} \pm 0.38$
Dark matter fraction at $10 \mathrm{kpc} f_{10}$	0.67 ± 0.02
Shape parameter T	0.65 ± 0.02
Average middle-to-long axis ratio p	0.845 ± 0.004
Average short-to-long axis ratio q	0.722 ± 0.007

	PA on Sky $\left({ }^{\circ}\right.$ E of N $)$	Angle from Line of Sight
Photometric Major Axis	-25°	-
Photometric Minor Axis	$+65^{\circ}$	-
Kinematic Axis	-165°	-

	PA on Sky $\left({ }^{\circ} \mathrm{E}\right.$ of N$)$	Angle from Line of Sight
Photometric Major Axis	-25°	-
Photometric Minor Axis	$+65^{\circ}$	-
Kinematic Axis	-165°	-
Intrinsic Long Axis	-12°	52°
Intrinsic Middle Axis	$+100^{\circ}$	63°
Intrinsic Short Axis	-144°	48°

	PA on Sky $\left({ }^{\circ}\right.$ E of N $)$	Angle from Line of Sight
Photometric Major Axis	-25°	-
Photometric Minor Axis	$+65^{\circ}$	-
Kinematic Axis	-165°	-
Intrinsic Long Axis	-12°	52°
Intrinsic Middle Axis	$+100^{\circ}$	63°
Intrinsic Short Axis	-144°	48°
Intrinsic \vec{L} Vector	$\left(-46_{-24}^{+17}\right)^{\circ}$	$\left(31_{-4}^{+7}\right)^{\circ}$
(between $80^{\prime \prime}$ and $\left.150^{\prime \prime}\right)$		

East - West

	PA on Sky $\left({ }^{\circ} \mathrm{E}\right.$ of N$)$	Angle from Line of Sight
Photometric Major Axis	-25°	-
Photometric Minor Axis	$+65^{\circ}$	-
Kinematic Axis	-165°	-
Intrinsic Long Axis	-12°	52°
Intrinsic Middle Axis	$+100^{\circ}$	63°
Intrinsic Short Axis	-144°	48°
Intrinsic \vec{L} Vector	$\left(-46_{-24}^{+17}\right)^{\circ}$	$\left(31_{-4}^{+7}\right)^{\circ}$
(between $80^{\prime \prime}$ and $\left.150 "\right)$	-72°	17°

The intrinsic angular momentum axis of M87's stellar component is only $\left(17_{-7}^{+11}\right)^{\circ}$ from the jet!

Thank you! (Questions?)

Looking Backward

Looking Forward

- SUPER-MASSIVE galaxies with huge central cores
- JWST M87 data in 30 ± 27 days
- TriOS 2.0!

