Supermassive Black Hole Discovery and Measurement with Triaxial Schwarzschild Modelling

Emily Liepold, UC Berkeley emilyliepold@berkeley.edu Slides at emilyliepold.com/today

The Big Picture

Triaxial Schwarzshild modelling!

First results! NGC1453 and NGC2693

M87

Motivation: What are we looking at?

The **MASSIVE** Survey targets **MASSIVE** galaxies with **MASSIVE** black holes

(McConnell+Ma 2013)

Motivation: What are we looking at?

The **MASSIVE** Survey targets **MASSIVE** galaxies with **MASSIVE** black holes

(McConnell+Ma 2013)

- These galaxies often have kinematic misalignments
- Kinematic misalignments strongly suggest a triaxial intrinsic shape (not axisymmetry!)

Shape of $\rho \rightarrow$ Shape of $\Phi \rightarrow$ Symmetries of $\Phi \rightarrow$ Conserved quantities and allowed orbits

Symmetry		Conserved Quantity	Orbits
Spherical	$\frac{d\Phi}{d\Omega} = 0$	(E, \vec{L})	Rosettes in fixed planes
Axisymmetry	$\frac{d\Phi}{d\phi} = 0$	(E, L_z, I_3)	Loops about symmetry axis
Triaxiality	Eĥ	(E, I_2, I_3)	It's complicated

Some orbits in triaxial potentials are strange!

Appears in axisymmetric potentials Not present in axisymmetry!

Some orbits in triaxial potentials are strange!

Appears in axisymmetric potentials Persistent sense of rotation about either the **short** or **long** axis Not present in axisymmetry!

No persistent sense of rotation

Some orbits in triaxial potentials are strange!

Appears in axisymmetric potentials Persistent sense of rotation about either the **short** or **long** axis **Centrophobic** Not present in axisymmetry!

No persistent sense of rotation Can be **Centrophilic** The Big Picture

Triaxial Schwarzshild modelling!

First results! NGC1453 and NGC2693

M87

Strategy:

- 1. Propose a (triaxial) stellar density distribution
- 2. Integrate representative orbits that span the phase space
- 3. Superimpose those orbits such that (1) is reproduced

Strategy:

- 1. Propose a (triaxial) stellar density distribution
- 2. Integrate representative orbits that span the phase space
- 3. Superimpose those orbits such that (1) is reproduced
- 4. Choose a superposition that **also** fits a set of kinematic observables

Strategy:

- 1. Propose a (triaxial) stellar density distribution
- 2. Integrate representative orbits that span the phase space
- 3. Superimpose those orbits such that (1) is reproduced
- 4. Choose a superposition that **also** fits a set of kinematic observables
- 5. Repeat (1-4) with a bunch of different mass models

(Spawned from earlier code from van den Bosch+ 2008) A **fortan**-based code for Schwarzschild orbit modelling in triaxial stellar potentials.

Model includes BH, stars, and dark matter halo:

$$\Phi = \Phi_{BH} + \Phi_* + \Phi_{DM}$$

Stellar kinematics (LOSVDs) described by Gauss-Hermite expansion with $y = (v - V)/\sigma$:

$$f(v) = \frac{e^{-\frac{v^2}{2}}}{\sqrt{2\pi\sigma^2}} \left[1 + \sum_{m=3}^n h_m H_m(y) \right]$$

2D (projected) and 3D (intrinsic) mass distributions are constrained for self-consistency.

Each **TriOS** model gives a χ^2 value for a single point in the parameter-space

• We need to search over *M*_{BH}, *M*/*L* (1 or 2 parameters), shape (3 parameters), and halo (1 or 2 parameters) – at least **6-8 dimensions**. (Grid Searches are inefficient)

Each **TriOS** model gives a χ^2 value for a single point in the parameter-space

- We need to search over *M*_{BH}, *M*/*L* (1 or 2 parameters), shape (3 parameters), and halo (1 or 2 parameters) at least **6-8 dimensions**. (Grid Searches are inefficient)
- This is **expensive**. Each model evaluation takes 10-30 CPU hours. (Highly iterative searches are impractical)

Each **TriOS** model gives a χ^2 value for a single point in the parameter-space

- We need to search over M_{BH} , M/L (1 or 2 parameters), shape (3 parameters), and halo (1 or 2 parameters) at least **6-8 dimensions**. (Grid Searches are inefficient)
- This is **expensive**. Each model evaluation takes 10-30 CPU hours. (Highly iterative searches are impractical)
- \cdot As data improves, confidence volumes **shrink** with \sim (Number of Constraints)^{-D/2}

1. Sparsely populate the space

- 1. Sparsely populate the space
- 2. Use Gaussian Process regression to model the χ^2 landscape

- 1. Sparsely populate the space
- 2. Use Gaussian Process regression to model the χ^2 landscape
- 3. Populate regions that are likely to be useful

- 1. Sparsely populate the space
- 2. Use Gaussian Process regression to model the χ^2 landscape
- 3. Populate regions that are likely to be useful
- For our triaxial searches, we've used this customized routine and only needed $3000 5000 \sim 4^6$ models across 3 iterations for 6 parameters. ($\sim 80,000$ CPU-hours)

- 1. Sparsely populate the space
- 2. Use Gaussian Process regression to model the χ^2 landscape
- 3. Populate regions that are likely to be useful
- For our triaxial searches, we've used this customized routine and only needed $3000 5000 \sim 4^6$ models across 3 iterations for 6 parameters. ($\sim 80,000$ CPU-hours)
- For a reasonable-resolution grid search (10 pt per dimension), we'd need O(10⁶) models – 20,000,000 CPU-hours!

- 1. Sparsely populate the space
- 2. Use Gaussian Process regression to model the χ^2 landscape
- 3. Populate regions that are likely to be useful
- For our triaxial searches, we've used this customized routine and only needed $3000 5000 \sim 4^6$ models across 3 iterations for 6 parameters. ($\sim 80,000$ CPU-hours)
- For a reasonable-resolution grid search (10 pt per dimension), we'd need O(10⁶) models – 20,000,000 CPU-hours!
- (We've been averaging 1.5M CPU-hours / year on Expanse at SDSC)

The Big Picture

Triaxial Schwarzshild modelling!

First results! NGC1453 and NGC2693

M87

Triaxial NGC1453 and NGC2693

(Liepold+20, Quenneville+21, Quenneville+22, Pilawa+22)

NGC1453

NGC2693

Triaxial NGC1453 and NGC2693

(Liepold+20, Quenneville+21, Quenneville+22, Pilawa+22)

NGC1453

NGC2693

The Big Picture

Triaxial Schwarzshild modelling!

First results! NGC1453 and NGC2693

M87

M87* has a *long* history

M87* has a *long* history

Our KCWI Observations

- We observed M87 with Keck Cosmic Web Imager (KCWI) during four observing runs from May 2020 - April 2022.
- This is an integral field unit, yielding a distinct spectrum at each spatial pixel.

Our KCWI Observations

- We observed M87 with Keck Cosmic Web Imager (KCWI) during four observing runs from May 2020 - April 2022.
- This is an integral field unit, yielding a distinct spectrum at each spatial pixel.
- 62 pointings were observed, each corresponding to a 20.4 $^{\prime\prime}$ \times 33 $^{\prime\prime}$ FOV with 0.3 $^{\prime\prime}$ \times 1.4 $^{\prime\prime}$ spatial pixels
- The full FOV spans about 250" along the photometric major axis and 300" along the minor (11.6 square arcmin in total!)

From Spectra to Stellar Velocities

(Liepold+23)

M87's Stellar Velocity Field

M87's Stellar Velocity Field

M87's Stellar Velocity Dispersion

M87 Property (units)	Inferred value
Black hole mass $M_{ m BH}$ (10 $^9~M_{\odot}$)	$5.37^{+0.37}_{-0.25}\pm0.22$
Inner M*/L (V-band; M $_{\odot}/L_{\odot}$)	$8.65^{+0.10}_{-0.15}\pm 0.38$
Dark matter fraction at 10 kpc f_{10}	0.67 ± 0.02
Shape parameter T	0.65 ± 0.02
Average middle-to-long axis ratio p	0.845 ± 0.004
Average short-to-long axis ratio q	0.722 ± 0.007

East – West

East – West

	PA on Sky	Angle from
	(° E of N)	Line of Sight
Photometric Major Axis	-25°	_
Photometric Minor Axis	$+65^{\circ}$	—
Kinematic Axis	-165°	—
Intrinsic Long Axis	-12°	52°
Intrinsic Middle Axis	+100°	63°
Intrinsic Short Axis	-144°	48°

	PA on Sky	Angle from
	(° E of N)	Line of Sight
Photometric Major Axis	-25°	_
Photometric Minor Axis	$+65^{\circ}$	_
Kinematic Axis	-165°	—
Intrinsic Long Axis	-12°	52°
Intrinsic Middle Axis	$+100^{\circ}$	63°
Intrinsic Short Axis	-144°	48°
Intrinsic <i>L</i> Vector	$(-46^{+17}_{-24})^{\circ}$	(31 ⁺⁷ ₋₄)°
(between 80" and 150")		

19

East - West

	PA on Sky	Angle from
	(°EofN)	Line of Sight
Photometric Major Axis	-25°	_
Photometric Minor Axis	$+65^{\circ}$	—
Kinematic Axis	-165°	_
Intrinsic Long Axis	-12°	52°
Intrinsic Middle Axis	$+100^{\circ}$	63°
Intrinsic Short Axis	-144°	48°
Intrinsic \vec{L} Vector	$(-46^{+17}_{-24})^{\circ}$	(31 ⁺⁷ ₋₄)°
(between 80" and 150")		
Jet!	-72°	17°

The intrinsic angular momentum axis of M87's stellar component is only $(17^{+11}_{-7})^{\circ}$ from the jet!

Thank you! (Questions?)

Looking Backward

120

Looking Forward

- SUPER-MASSIVE galaxies with huge central cores
- + JWST M87 data in 30 \pm 27 days
- TriOS 2.0!