Keck Integral-Field Spectroscopy of M87 Reveals an Intrinsically Triaxial Galaxy and a Revised Black Hole Mass

Emily Liepold, UC Berkeley
emilyliepold@berkeley.edu

Liepold, Ma, and Walsh, ApJL, 945 L35. (12 days old!)
Download the paper at emilyliepold.com/M87

Our Observations

Our Data

Triaxiality!

Triaxial Schwarzschild Modelling

Results!

Motivation: What are we looking at?

The MASSIVE Survey targets MASSIVE galaxies with MASSIVE black holes

Motivation: What are we looking at?

The MASSIVE Survey targets MASSIVE galaxies with MASSIVE black holes

Our KCWI Observations

- We observed M87 with Keck Cosmic Web Imager (KCWI) during four observing runs from May 2020 - April 2022.
- This is an integral field unit, yielding a distinct spectrum at each spatial pixel.
- We observed M87 with Keck Cosmic Web Imager (KCWI) during four observing runs from May 2020 - April 2022.
- This is an integral field unit, yielding a distinct spectrum at each spatial pixel.
- 62 pointings were observed, each corresponding to a $20.4^{\prime \prime} \times 33^{\prime \prime}$ FOV with $0.3^{\prime \prime} \times 1.4^{\prime \prime}$ spatial pixels
- The full FOV spans about 250 " along the photometric major axis and 300 " along the minor (11.6 square arcmin in total!)
- We observed M87 with Keck Cosmic Web Imager (KCWI) during four observing runs from May 2020 - April 2022.
- This is an integral field unit, yielding a distinct spectrum at each spatial pixel.
- 62 pointings were observed, each corresponding to a $20.4^{\prime \prime} \times 33^{\prime \prime}$ FOV with $0.3^{\prime \prime} \times 1.4^{\prime \prime}$ spatial pixels
- The full FOV spans about 250 " along the photometric major axis and $300^{\prime \prime}$ along the minor (11.6 square arcmin in total!)
- The spectra are usable from $3500 \AA$ and 5600 Å with $R \sim 900$

Our Observations

Our Data

Triaxiality!

Triaxial Schwarzschild Modelling

Results!

M87's Stellar Velocity Field

M87's Stellar Velocity Field

M87's Stellar Velocity Dispersion

Our Observations

Our Data

Triaxiality!

Triaxial Schwarzschild Modelling

Results!

Motivation: Why do we care about the shape?

Shape of $\rho \rightarrow$ Shape of $\phi \rightarrow$ Symmetries of $\Phi \rightarrow$ Conserved quantities and allowed orbits

Symmetry		Conserved Quantity	Orbits
Spherical	$\frac{d \Phi}{d \Omega}=0$	(E, \vec{L})	Rosettes in fixed planes
Axisymmetry	$\frac{d \Phi}{d \phi}=0$	$\left(E, L_{2}, I_{3}\right)$	Loops about symmetry axis
Triaxiality	Eh...	$\left(E, I_{2}, I_{3}\right)$	It's complicated...

More Motivation: Kinematic fingerprints of non-axisymmetry

- Orbits with axisymmetric symmetry always have a kinematic axis perpendicular to the projected symmetry axis

More Motivation: Kinematic fingerprints of non-axisymmetry

- Orbits with axisymmetric symmetry always have a kinematic axis perpendicular to the projected symmetry axis
- In oblate axisymmetry, the projected symmetry axis is perpendicular to the photometric major axis.

More Motivation: Kinematic fingerprints of non-axisymmetry

- Orbits with axisymmetric symmetry always have a kinematic axis perpendicular to the projected symmetry axis
- In oblate axisymmetry, the projected symmetry axis is perpendicular to the photometric major axis.
- Axisymmetric models cannot exhibit kinematic misalignment.

More Motivation: Kinematic fingerprints of non-axisymmetry

- Orbits with axisymmetric symmetry always have a kinematic axis perpendicular to the projected symmetry axis
- In oblate axisymmetry, the projected symmetry axis is perpendicular to the photometric major axis.
- Axisymmetric models cannot exhibit kinematic misalignment.
- Triaxial modelling (or modelling with less symmetry) is required to reproduce the velocity fields if there is kinematic misalignment or other non-bisymmetric features

More Motivation: Kinematic fingerprints of non-axisymmetry

- Orbits with axisymmetric symmetry always have a kinematic axis perpendicular to the projected symmetry axis
- In oblate axisymmetry, the projected symmetry axis is perpendicular to the photometric major axis.
- Axisymmetric models cannot exhibit kinematic misalignment.
- Triaxial modelling (or modelling with less symmetry) is required to reproduce the velocity fields if there is kinematic misalignment or other non-bisymmetric features
- (That's M87!)

Orbits in triaxial potentials

Loop Orbits Box Orbits

Orbits in triaxial potentials

Loop Orbits Box Orbits

Orbits in triaxial potentials

Loop Orbits Box Orbits

Orbits in triaxial potentials

Loop Orbits Box Orbits

Our Observations

Our Data

Triaxiality!

Triaxial Schwarzschild Modelling

Results!

Schwarzschild Orbit Modelling

Schwarzschild 1979: Can triaxial stellar systems in dynamical equilibrium be self-consistent?

Strategy:

1. Propose a (triaxial) stellar density distribution
2. Integrate representative orbits that span the phase space
3. Superimpose those orbits such that (1) is reproduced

Schwarzschild Orbit Modelling

Schwarzschild 1979: Can triaxial stellar systems in dynamical equilibrium be self-consistent?

Strategy:

1. Propose a (triaxial) stellar density distribution
2. Integrate representative orbits that span the phase space
3. Superimpose those orbits such that (1) is reproduced

This turns out to easy for reasonable proposed models. We can also try to fit kinematic observables to compare different proposed potentials.

The TriOS Triaxial Orbit Superposition Code

van den Bosch+ 2008: Development of a fortan-based code for Schwarzschild orbit modelling in triaxial stellar potentials.

Model includes BH, stars, and dark matter halo:

$$
\Phi=\Phi_{B H}+\Phi_{*}+\Phi_{D M}
$$

Stellar kinematics (LOSVDs) described by Gauss-Hermite expansion with $y=(v-V) / \sigma$:

$$
f(v)=\frac{e^{-\frac{v^{2}}{2}}}{\sqrt{2 \pi \sigma^{2}}}\left[1+\sum_{m=3}^{n} h_{m} H_{m}(y)\right]
$$

2D (projected) and 3D (intrinsic) mass distributions are constrained for self-consistency.
The code was un-named. We call our improved version 'TriOS' (Triaxial Orbit Superposition)

Each TriOS model gives a χ^{2} value for a single point in the parameter-space

- We need to search over $M_{B H}, M / L$ (1 or 2 parameters), shape (3 parameters), and halo (1 or 2 parameters) - at least 6-8 dimensions. (Grid Searches are inefficient)

Each TriOS model gives a χ^{2} value for a single point in the parameter-space

- We need to search over $M_{B H}, M / L$ (1 or 2 parameters), shape (3 parameters), and halo (1 or 2 parameters) - at least 6-8 dimensions. (Grid Searches are inefficient)
- This is expensive. Each model evaluation takes 10-30 CPU hours. (Highly iterative searches are impractical)

Each TriOS model gives a χ^{2} value for a single point in the parameter-space

- We need to search over $M_{B H}, M / L$ (1 or 2 parameters), shape (3 parameters), and halo (1 or 2 parameters) - at least 6-8 dimensions. (Grid Searches are inefficient)
- This is expensive. Each model evaluation takes 10-30 CPU hours. (Highly iterative searches are impractical)
- As data improves, confidence volumes shrink with $\sim(\text { (Number of Constraints) })^{-D / 2}$

Efficient Sampling for Triaxial Modelling

Our Strategy (inspired by Bayesian Optimization and nested sampling):

1. Sparsely populate the space

Efficient Sampling for Triaxial Modelling

Our Strategy (inspired by Bayesian Optimization and nested sampling):

1. Sparsely populate the space
2. Use Gaussian Process regression to model the χ^{2} landscape

Efficient Sampling for Triaxial Modelling

Our Strategy (inspired by Bayesian Optimization and nested sampling):

1. Sparsely populate the space
2. Use Gaussian Process regression to model the χ^{2} landscape
3. Populate regions that are likely to be useful

Efficient Sampling for Triaxial Modelling

Our Strategy (inspired by Bayesian Optimization and nested
sampling):

1. Sparsely populate the space
2. Use Gaussian Process regression to model the χ^{2} landscape
3. Populate regions that are likely to be useful

For our triaxial searches, we've used this customized routine and only needed $3000-5000 \sim 4^{6}$ models across 3 iterations for 6 parameters. ($\sim 80,000$ CPU-hours)

Efficient Sampling for Triaxial Modelling

Our Strategy (inspired by Bayesian Optimization and nested sampling):

1. Sparsely populate the space
2. Use Gaussian Process regression to model the χ^{2} landscape
3. Populate regions that are likely to be useful

For our triaxial searches, we've used this customized routine and only needed $3000-5000 \sim 4^{6}$ models across 3 iterations for 6 parameters. ($\sim 80,000$ CPU-hours)

For a reasonable-resolution grid search (10 pt per dimension), we'd need $\mathrm{O}\left(10^{6}\right)$ models - 20,000,000 CPU-hours!

Efficient Sampling of the Shape

- The 3D shape is determined through deprojection of the 2D surface brightness profile (we use MGEs)
- This deprojection requires the choice of 3 parameters - viewing angles (θ, ϕ, ψ) or axis ratios (u, p, q).

Efficient Sampling of the Shape

- The 3D shape is determined through deprojection of the 2D surface brightness profile (we use MGEs)
- This deprojection requires the choice of 3 parameters - viewing angles (θ, ϕ, ψ) or axis ratios (u,p,q).
- Not all choices of these parameters produce valid deprojections $\left(0 \leq q \leq u q^{\prime} \leq p \leq u \leq 1\right)$

Efficient Sampling of the Shape

- The 3D shape is determined through deprojection of the 2D surface brightness profile (we use MGEs)
- This deprojection requires the choice of 3 parameters - viewing angles (θ, ϕ, ψ) or axis ratios (u,p,q).
- Not all choices of these parameters produce valid deprojections $\left(0 \leq q \leq u q^{\prime} \leq p \leq u \leq 1\right)$
- We've found an additional set of parameters which map the deprojectible shape space to a unit cube with minimal covariances

$$
T=\frac{1-p^{2}}{1-q^{2}} \quad T_{\text {maj }}=\frac{1-u^{2}}{1-p^{2}} \quad T_{\text {min }}=\frac{\left(u q^{\prime}\right)^{2}-q^{2}}{p^{2}-q^{2}}
$$

Our Observations

Our Data

Triaxiality!

Triaxial Schwarzschild Modelling

Results!

Our Results!

M87 Property (units)	Inferred value
Black hole mass $M_{\mathrm{BH}}\left(10^{9} M_{\odot}\right)$	$5.37_{-0.25}^{+0.37} \pm 0.22$
Inner $M^{*} / L\left(V\right.$-band; $\left.M_{\odot} / L_{\odot}\right)$	$8.65_{-0.15}^{+0.10} \pm 0.38$
Dark matter fraction at $10 \mathrm{kpc} f_{10}$	0.67 ± 0.02
Shape parameter T	0.65 ± 0.02
Average middle-to-long axis ratio p	0.845 ± 0.004
Average short-to-long axis ratio q	0.722 ± 0.007

	PA on Sky $\left({ }^{\circ}\right.$ E of N $)$	Angle from Line of Sight
Photometric Major Axis	-25°	-
Photometric Minor Axis	$+65^{\circ}$	-

	PA on Sky $\left({ }^{\circ} \mathrm{E}\right.$ of N$)$	Angle from Line of Sight
Photometric Major Axis	-25°	-
Photometric Minor Axis	$+65^{\circ}$	-
Kinematic Axis	-165°	-

	PA on Sky $\left({ }^{\circ}\right.$ E of N $)$	Angle from Line of Sight
Photometric Major Axis	-25°	-
Photometric Minor Axis	$+65^{\circ}$	-
Kinematic Axis	-165°	-
Jet!	-72°	17°

	PA on Sky $\left({ }^{\circ}\right.$ E of N $)$	Angle from Line of Sight
Photometric Major Axis	-25°	-
Photometric Minor Axis	$+65^{\circ}$	-
Kinematic Axis	-165°	-
Jet!	-72°	17°
Intrinsic Long Axis	-12°	52°
Intrinsic Middle Axis	$+100^{\circ}$	63°
Intrinsic Short Axis	-144°	48°

	PA on Sky $\left({ }^{\circ}\right.$ E of N)	Angle from Line of Sight
Photometric Major Axis	-25°	-
Photometric Minor Axis	$+65^{\circ}$	-
Kinematic Axis	-165°	-
Jet!	-72°	17°
Intrinsic Long Axis	-12°	52°
Intrinsic Middle Axis	$+100^{\circ}$	63°
Intrinsic Short Axis	-144°	48°
Intrinsic \vec{L} Vector	$\left(-46_{-24}^{+17}\right)^{\circ}$	$\left(31_{-4}^{+7}\right)^{\circ}$
(between $80^{\prime \prime}$ and $\left.150^{\prime \prime}\right)$		

East - West

	PA on Sky $\left({ }^{\circ}\right.$ E of N $)$	Angle from Line of Sight
Photometric Major Axis	-25°	-
Photometric Minor Axis	$+65^{\circ}$	-
Kinematic Axis	-165°	-
Jet!	-72°	17°
Intrinsic Long Axis	-12°	52°
Intrinsic Middle Axis	$+100^{\circ}$	63°
Intrinsic Short Axis	-144°	48°
Intrinsic \vec{L} Vector	$\left(-46_{-24}^{+17}\right)^{\circ}$	$\left(31_{-4}^{+7}\right)^{\circ}$
(between $80^{\prime \prime}$ and 150 ")		

The intrinsic angular momentum axis of M87's stellar component is only $\left(17_{-7}^{+11}\right)^{\circ}$ from the jet!

Thank you! (Questions?)

$M_{\text {BH }}\left(10^{9} M_{\odot}\right)$
Shape parameter T
Axis ratio p
0.65 ± 0.02
0.845 ± 0.004
Axis ratio q

