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Motivation: What are we looking at?

The MASSIVE Survey targets MASSIVE galaxies
with MASSIVE black holes
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Our KCWI Observations (Liepold+23)
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• We observed M87 with Keck Cosmic Web
Imager (KCWI) during four observing
runs from May 2020 - April 2022.

• This is an integral field unit, yielding a
distinct spectrum at each spatial pixel.

• 62 pointings were observed, each
corresponding to a 20.4′′ × 33′′ FOV with
0.3′′ × 1.4′′ spatial pixels

• The full FOV spans about 250” along the
photometric major axis and 300” along
the minor (11.6 square arcmin in total!)

• The spectra are usable from 3500Å and
5600Å with R ∼ 900
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From Spectra to Stellar Velocities (Liepold+23)
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M87’s Stellar Velocity Field (Liepold+23)
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M87’s Stellar Velocity Field (Liepold+23)
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M87’s Stellar Velocity Dispersion (Liepold+23)
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Motivation: Why do we care about the shape?

Shape of ρ→ Shape of Φ → Symmetries of Φ → Conserved quantities and allowed orbits

Symmetry Conserved Quantity Orbits

Spherical dΦ
dΩ = 0 (E,~L) Rosettes in fixed planes

Axisymmetry dΦ
dφ = 0 (E, Lz, I3) Loops about symmetry axis

Triaxiality Eh... (E, I2, I3) It’s complicated...
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More Motivation: Kinematic fingerprints of non-axisymmetry

+z

+z

+z

• Orbits with axisymmetric symmetry always
have a kinematic axis perpendicular to the
projected symmetry axis

• In oblate axisymmetry, the projected symmetry
axis is perpendicular to the photometric major
axis.

• Axisymmetric models cannot exhibit kinematic
misalignment.

• Triaxial modelling (or modelling with less
symmetry) is required to reproduce the velocity
fields if there is kinematic misalignment or
other non-bisymmetric features

• (That’s M87!)
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Orbits in triaxial potentials

Loop Orbits Box Orbits

Appears in axisymmetric potentials Not present in axisymmetry!
Persistent sense of rotation about
either the short or long axis No persistent sense of rotation

Centrophobic Can be Centrophilic
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Schwarzschild Orbit Modelling

Schwarzschild 1979: Can triaxial stellar systems in dynamical equilibrium be
self-consistent?

Strategy:

1. Propose a (triaxial) stellar density distribution
2. Integrate representative orbits that span the phase space
3. Superimpose those orbits such that (1) is reproduced

This turns out to easy for reasonable proposed models. We can also try to fit kinematic
observables to compare different proposed potentials.
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The TriOS Triaxial Orbit Superposition Code (Liepold+20, Quenneville+21,22)

van den Bosch+ 2008: Development of a fortan-based code for Schwarzschild orbit
modelling in triaxial stellar potentials.

Model includes BH, stars, and dark matter halo:

Φ = ΦBH +Φ∗ +ΦDM

Stellar kinematics (LOSVDs) described by Gauss-Hermite expansion with y = (v − V)/σ:

f (v) = e−
y2
2

√
2πσ2

[
1+

n∑
m=3

hmHm(y)
]

2D (projected) and 3D (intrinsic) mass distributions are constrained for self-consistency.
The code was un-named. We call our improved version ’TriOS’ (Triaxial Orbit
Superposition)
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Efficient Sampling for Triaxial Modelling (Quenneville+22, Pilawa+22, Liepold+23)

Each TriOS model gives a χ2 value for a single point in the parameter-space

• We need to search over MBH, M/L (1 or 2 parameters), shape (3 parameters), and halo
(1 or 2 parameters) – at least 6-8 dimensions. (Grid Searches are inefficient)

• This is expensive. Each model evaluation takes 10-30 CPU hours. (Highly iterative
searches are impractical)

• As data improves, confidence volumes shrink with ∼ (Number of Constraints)−D/2
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Efficient Sampling for Triaxial Modelling (Quenneville+22, Pilawa+22, Liepold+23)

Our Strategy (inspired by Bayesian Optimization and nested
sampling):
1. Sparsely populate the space

2. Use Gaussian Process regression to model the χ2

landscape
3. Populate regions that are likely to be useful

For our triaxial searches, we’ve used this customized routine
and only needed 3000− 5000 ∼ 46 models across 3 iterations
for 6 parameters. (∼ 80,000 CPU-hours)
For a reasonable-resolution grid search (10 pt per dimension),
we’d need O(106) models – 20,000,000 CPU-hours!
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Efficient Sampling of the Shape (Quenneville+22)

• The 3D shape is determined through
deprojection of the 2D surface
brightness profile (we use MGEs)

• This deprojection requires the choice of
3 parameters – viewing angles (θ,φ,ψ) or
axis ratios (u,p,q).

• Not all choices of these parameters
produce valid deprojections
(0 ≤ q ≤ uq′ ≤ p ≤ u ≤ 1)

• We’ve found an additional set of
parameters which map the
deprojectible shape space to a unit
cube with minimal covariances

T = 1−p2
1−q2 Tmaj =

1−u2
1−p2 Tmin = (uq′)2−q2

p2−q2
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Our Results! (Liepold+23)
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M87 Property (units) Inferred value

Black hole mass MBH (109 M�) 5.37+0.37−0.25 ± 0.22

Inner M∗/L (V-band; M�/L�) 8.65+0.10−0.15 ± 0.38

Dark matter fraction at 10 kpc f10 0.67± 0.02

Shape parameter T 0.65± 0.02

Average middle-to-long axis ratio p 0.845± 0.004

Average short-to-long axis ratio q 0.722± 0.007
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M87’s Intrinsic Angular Momentum Axis (Liepold+23)
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◦ from the jet!
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M87’s Intrinsic Angular Momentum Axis (Liepold+23)
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M87’s Intrinsic Angular Momentum Axis (Liepold+23)
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Thank you! (Questions?)
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