A Duet of Black Holes from the TriOS (Triaxial Orbit Superposition) Code

Emily Liepold emilyliepold@berkeley.edu

UC Berkeley

The **MASSIVE** Survey targets **MASSIVE** galaxies with **MASSIVE** black holes

Motivation: What are we looking at?

The **MASSIVE** Survey targets **MASSIVE** galaxies with **MASSIVE** black holes

- These galaxies often have kinematic misalignments
- **Kinematic misalignments** strongly suggest a **triaxial** intrinsic shape (not axisymmetry!)

Shape of $\rho \rightarrow$ Shape of $\Phi \rightarrow$ Symmetries of $\Phi \rightarrow$ Conserved quantities and allowed orbits

Symmetry		Conserved Quantity	Orbits
Spherical	$\frac{d\Phi}{d\Omega} = 0$	(E, \vec{L})	Rosettes in fixed planes
Axisymmetry	$\frac{d\Phi}{d\phi} = 0$	(E, L_z, I_3)	Loops about symmetry axis
Triaxiality	Eĥ	(E, I_2, I_3)	It's complicated

Orbits in triaxial potentials

Appears in axisymmetric potentials Not present in axisymmetry!

Appears in axisymmetric potentials Persistent sense of rotation about either the **short** or **long** axis Not present in axisymmetry!

No persistent sense of rotation

Appears in axisymmetric potentials Persistent sense of rotation about either the **short** or **long** axis **Centrophobic** Not present in axisymmetry!

No persistent sense of rotation Can be **Centrophilic** Schwarzschild 1979: Can triaxial stellar systems in dynamical equilibrium be self-consistent?

Strategy:

- 1. Propose a (triaxial) stellar density distribution
- 2. Integrate representative orbits that span the phase space
- 3. Superimpose those orbits such that (1) is reproduced

The TriOS Triaxial Orbit Superposition Code

van den Bosch+ 2008: Development of a **fortan**-based code for Schwarzschild orbit modelling in triaxial stellar potentials.

Model includes BH, stars, and dark matter halo:

$$\Phi = \Phi_{BH} + \Phi_* + \Phi_{DM}$$

Stellar kinematics (LOSVDs) described by Gauss-Hermite expansion with $y = (v - V)/\sigma$:

$$f(v) = \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi\sigma^2}} \left[1 + \sum_{m=3}^n h_m H_m(y) \right]$$

2D (projected) and 3D (intrinsic) mass distributions are constrained for self-consistency. The code was un-named. We call our improved version 'TriOS' (**Tri**axial **O**rbit **S**uperposition) We've made a number of changes to the original vdB+08 code

- We've added a mode which **axisymmetrizes** the orbits, effectively making TriOS an (optionally) axisymmetric code.
- Orbits in triaxial potentials were **improperly mirrored** in the original code. We've fixed this
- Orbits near the BH's sphere of influence precess *slowly*. Orbits must be integrated for up to ~2000 dynamical times before we find model convergence (vs 200 in previous usage)
- The original **orbit sampling density** leads to spurious biases in the preferred triaxiality parameter *T*. Doubling the sampling density solves the issue in most cases.
- Re-writing and tuning the routines for PSF convolution and acceleration pre-caching sped up the code by $5 10 \times$ overall.
- In some circumstances, **energy conservation** was not checked after orbit integration or **mass self-consistency** was ill-enforced. These have been fixed.

Each **TriOS** model gives a χ^2 value for a single point in the parameter-space

• We need to search over M_{BH} , M/L (1 or 2 parameters), shape (3 parameters), and halo (1 or 2 parameters) – at least **6-8 dimensions**. (Grid Searches are inefficient)

Each **TriOS** model gives a χ^2 value for a single point in the parameter-space

- We need to search over *M*_{BH}, *M*/*L* (1 or 2 parameters), shape (3 parameters), and halo (1 or 2 parameters) at least **6-8 dimensions**. (Grid Searches are inefficient)
- This is **expensive**. Each model evaluation takes 10-30 CPU hours. (Highly iterative searches are impractical)

Each **TriOS** model gives a χ^2 value for a single point in the parameter-space

- We need to search over *M*_{BH}, *M*/*L* (1 or 2 parameters), shape (3 parameters), and halo (1 or 2 parameters) at least **6-8 dimensions**. (Grid Searches are inefficient)
- This is **expensive**. Each model evaluation takes 10-30 CPU hours. (Highly iterative searches are impractical)
- \cdot As data improves, confidence volumes shrink with \sim (Number of Constraints)^{-D/2}

1. Sparsely populate the space

- 1. Sparsely populate the space
- 2. Use Gaussian Process regression to model the χ^2 landscape

- 1. Sparsely populate the space
- 2. Use Gaussian Process regression to model the χ^2 landscape
- 3. Populate regions that are likely to be useful

- 1. Sparsely populate the space
- 2. Use Gaussian Process regression to model the χ^2 landscape
- 3. Populate regions that are likely to be useful

For our triaxial searches, we used this customized routine and only needed $3000 - 5000 \sim 4^6$ across 3 iterations for a 6D search. (~80,000 CPU-hours)

- 1. Sparsely populate the space
- 2. Use Gaussian Process regression to model the χ^2 landscape
- 3. Populate regions that are likely to be useful

For our triaxial searches, we used this customized routine and only needed $3000 - 5000 \sim 4^6$ across 3 iterations for a 6D search. (~80,000 CPU-hours)

For a reasonable-resolution grid search (10 pt per dimension), we'd need $O(10^6)$ models – 20,000,000 CPU-hours!

Efficient Sampling of the Shape (Quenneville, Liepold, and Ma 2021b)

- The 3D shape is determined through **deprojection** of the 2D surface brightness profile (we use MGEs)
- This deprojection requires the choice of **3** parameters viewing angles (θ, ϕ, ψ) or axis ratios (u, p, q).

Efficient Sampling of the Shape (Quenneville, Liepold, and Ma 2021b)

- The 3D shape is determined through **deprojection** of the 2D surface brightness profile (we use MGEs)
- This deprojection requires the choice of **3** parameters viewing angles (θ, ϕ, ψ) or axis ratios (u, p, q).
- Not all choices of these parameters produce valid deprojections
 (0 ≤ q ≤ uq' ≤ p ≤ u ≤ 1)

Efficient Sampling of the Shape (Quenneville, Liepold, and Ma 2021b)

- The 3D shape is determined through **deprojection** of the 2D surface brightness profile (we use MGEs)
- This deprojection requires the choice of **3** parameters viewing angles (θ, ϕ, ψ) or axis ratios (u, p, q).
- Not all choices of these parameters produce valid deprojections
 (0 ≤ q ≤ uq' ≤ p ≤ u ≤ 1)
- We've found an additional set of parameters which map the deprojectible shape space to a unit cube with minimal covariances

$$T = \frac{1-p^2}{1-q^2}$$
 $T_{maj} = \frac{1-u^2}{1-p^2}$ $T_{min} = \frac{(uq')^2 - q^2}{p^2 - q^2}$

Triaxial NGC1453 and NGC2693 (Quenneville, Liepold, and Ma 2021b), (Pilawa, Liepold+22)

NGC1453

NGC2693

Triaxial NGC1453 and NGC2693 (Quenneville, Liepold, and Ma 2021b), (Pilawa, Liepold+22)

NGC1453

NGC2693

10

- Recent papers (Lipka+Thomas 2021+2022) suggest that the **model complexity** must be taken into account while finding the best-fit models by adding a penalty term to the model χ^2
- Our preliminary tests suggest that this issue is **significant for axisymmetric models** and a bias in inclination is present if the complexity is ignored
- Our preliminary tests find that the issue is **far less important for triaxial models** and the preferred shape is more-or-less unchanged when reasonable penalty terms are introduced.

Thank you! (Questions?)

Looking Backward

Looking Forward

- Improved search algorithms
- Model Complexity?
- More Galaxies! (Exciting results on the horizon)