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Motivation: What are we looking at?

The MASSIVE Survey targets MASSIVE galaxies
with MASSIVE black holes

• These galaxies often have
kinematic misalignments

• Kinematic misalignments strongly
suggest a triaxial intrinsic shape
(not axisymmetry!)
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Motivation: Why do we care about the shape?

Shape of ρ→ Shape of Φ → Symmetries of Φ → Conserved quantities and allowed orbits

Symmetry Conserved Quantity Orbits

Spherical dΦ
dΩ = 0 (E,~L) Rosettes in fixed planes

Axisymmetry dΦ
dφ = 0 (E, Lz, I3) Loops about symmetry axis

Triaxiality Eh... (E, I2, I3) It’s complicated...
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Orbits in triaxial potentials

Loop Orbits Box Orbits

Appears in axisymmetric potentials Not present in axisymmetry!
Persistent sense of rotation about
either the short or long axis No persistent sense of rotation

Centrophobic Can be Centrophilic
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Schwarzschild Orbit Modelling

Schwarzschild 1979: Can triaxial stellar systems in dynamical equilibrium be
self-consistent?

Strategy:

1. Propose a (triaxial) stellar density distribution
2. Integrate representative orbits that span the phase space
3. Superimpose those orbits such that (1) is reproduced
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The TriOS Triaxial Orbit Superposition Code

van den Bosch+ 2008: Development of a fortan-based code for Schwarzschild orbit
modelling in triaxial stellar potentials.

Model includes BH, stars, and dark matter halo:

Φ = ΦBH +Φ∗ +ΦDM

Stellar kinematics (LOSVDs) described by Gauss-Hermite expansion with y = (v − V)/σ:

f (v) = e−
y2
2

√
2πσ2

[
1+

n∑
m=3

hmHm(y)
]

2D (projected) and 3D (intrinsic) mass distributions are constrained for self-consistency.
The code was un-named. We call our improved version ’TriOS’ (Triaxial Orbit
Superposition)
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New Features in TriOS (Liepold+20) (Quenneville, Liepold, and Ma 2021a+b)

We’ve made a number of changes to the original vdB+08 code

• We’ve added a mode which axisymmetrizes the orbits, effectively making TriOS an
(optionally) axisymmetric code.

• Orbits in triaxial potentials were improperly mirrored in the original code. We’ve
fixed this

• Orbits near the BH’s sphere of influence precess slowly. Orbits must be integrated
for up to ∼2000 dynamical times before we find model convergence (vs 200 in
previous usage)

• The original orbit sampling density leads to spurious biases in the preferred
triaxiality parameter T . Doubling the sampling density solves the issue in most cases.

• Re-writing and tuning the routines for PSF convolution and acceleration pre-caching
sped up the code by 5− 10× overall.

• In some circumstances, energy conservation was not checked after orbit integration
or mass self-consistency was ill-enforced. These have been fixed.
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Efficient Sampling for Triaxial Modelling (Liepold+ future paper)

Each TriOS model gives a χ2 value for a single point in the parameter-space

• We need to search over MBH, M/L (1 or 2 parameters), shape (3 parameters), and halo
(1 or 2 parameters) – at least 6-8 dimensions. (Grid Searches are inefficient)

• This is expensive. Each model evaluation takes 10-30 CPU hours. (Highly iterative
searches are impractical)

• As data improves, confidence volumes shrink with ∼ (Number of Constraints)−D/2
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Efficient Sampling for Triaxial Modelling (Liepold+ future paper)

Our Strategy (inspired by Bayesian Optimization and nested
sampling):
1. Sparsely populate the space

2. Use Gaussian Process regression to model the χ2

landscape
3. Populate regions that are likely to be useful

For our triaxial searches, we used this customized routine and
only needed 3000− 5000 ∼ 46 across 3 iterations for a 6D
search. (∼80,000 CPU-hours)
For a reasonable-resolution grid search (10 pt per dimension),
we’d need O(106) models – 20,000,000 CPU-hours!
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Efficient Sampling of the Shape (Quenneville, Liepold, and Ma 2021b)

• The 3D shape is determined through
deprojection of the 2D surface
brightness profile (we use MGEs)

• This deprojection requires the choice of
3 parameters – viewing angles (θ,φ,ψ) or
axis ratios (u,p,q).

• Not all choices of these parameters
produce valid deprojections
(0 ≤ q ≤ uq′ ≤ p ≤ u ≤ 1)

• We’ve found an additional set of
parameters which map the
deprojectible shape space to a unit
cube with minimal covariances

T = 1−p2
1−q2 Tmaj =

1−u2
1−p2 Tmin = (uq′)2−q2

p2−q2
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Triaxial NGC1453 and NGC2693 (Quenneville, Liepold, and Ma 2021b), (Pilawa, Liepold+22)

NGC1453 NGC2693
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Looking Forward: Model Complexity

• Recent papers (Lipka+Thomas 2021+2022) suggest that the model complexity must be
taken into account while finding the best-fit models by adding a penalty term to the
model χ2

• Our preliminary tests suggest that this issue is significant for axisymmetric models
and a bias in inclination is present if the complexity is ignored

• Our preliminary tests find that the issue is far less important for triaxial models and
the preferred shape is more-or-less unchanged when reasonable penalty terms are
introduced.
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Thank you! (Questions?)

Looking Backward

Looking Forward
• Improved search algorithms
• Model Complexity?
• More Galaxies! (Exciting
results on the horizon)
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