A Duet of Black Holes from the TriOS (Triaxial Orbit Superposition) Code

Emily Liepold
emilyliepold@berkeley.edu

UC Berkeley

Motivation: What are we looking at?

The MASSIVE Survey targets MASSIVE galaxies with MASSIVE black holes

Motivation: What are we looking at?

- These galaxies often have kinematic misalignments
- Kinematic misalignments strongly suggest a triaxial intrinsic shape (not axisymmetry!)

Motivation: Why do we care about the shape?

Shape of $\rho \rightarrow$ Shape of $\phi \rightarrow$ Symmetries of $\Phi \rightarrow$ Conserved quantities and allowed orbits

Symmetry		Conserved Quantity	Orbits
Spherical	$\frac{d \Phi}{d \Omega}=0$	(E, \vec{L})	Rosettes in fixed planes
Axisymmetry	$\frac{d \Phi}{d \phi}=0$	$\left(E, L_{2}, l_{3}\right)$	Loops about symmetry axis
Triaxiality	Eh...	$\left(E, l_{2}, l_{3}\right)$	It's complicated...

Orbits in triaxial potentials

Loop Orbits Box Orbits

Orbits in triaxial potentials

Loop Orbits Box Orbits

Orbits in triaxial potentials

Loop Orbits Box Orbits

Orbits in triaxial potentials

Loop Orbits Box Orbits

Schwarzschild Orbit Modelling

Schwarzschild 1979: Can triaxial stellar systems in dynamical equilibrium be self-consistent?

Strategy:

1. Propose a (triaxial) stellar density distribution
2. Integrate representative orbits that span the phase space
3. Superimpose those orbits such that (1) is reproduced

The TriOS Triaxial Orbit Superposition Code

van den Bosch+ 2008: Development of a fortan-based code for Schwarzschild orbit modelling in triaxial stellar potentials.

Model includes BH, stars, and dark matter halo:

$$
\Phi=\Phi_{B H}+\Phi_{*}+\Phi_{D M}
$$

Stellar kinematics (LOSVDs) described by Gauss-Hermite expansion with $y=(v-V) / \sigma$:

$$
f(v)=\frac{e^{-\frac{v^{2}}{2}}}{\sqrt{2 \pi \sigma^{2}}}\left[1+\sum_{m=3}^{n} h_{m} H_{m}(y)\right]
$$

2D (projected) and 3D (intrinsic) mass distributions are constrained for self-consistency.
The code was un-named. We call our improved version 'TriOS' (Triaxial Orbit Superposition)

New Features in TriOS (Liepold+20) (Quenneville, Liepold, and Ma 2021a+b)

We've made a number of changes to the original vdB+08 code

- We've added a mode which axisymmetrizes the orbits, effectively making TriOS an (optionally) axisymmetric code.
- Orbits in triaxial potentials were improperly mirrored in the original code. We've fixed this
- Orbits near the BH's sphere of influence precess slowly. Orbits must be integrated for up to ~ 2000 dynamical times before we find model convergence (vs 200 in previous usage)
- The original orbit sampling density leads to spurious biases in the preferred triaxiality parameter T. Doubling the sampling density solves the issue in most cases.
- Re-writing and tuning the routines for PSF convolution and acceleration pre-caching sped up the code by $5-10 \times$ overall.
- In some circumstances, energy conservation was not checked after orbit integration or mass self-consistency was ill-enforced. These have been fixed.

Efficient Sampling for Triaxial Modelling (Liepold+ future paper)

Each TriOS model gives a χ^{2} value for a single point in the parameter-space

- We need to search over $M_{B H}, M / L$ (1 or 2 parameters), shape (3 parameters), and halo (1 or 2 parameters) - at least 6-8 dimensions. (Grid Searches are inefficient)

Efficient Sampling for Triaxial Modelling (Liepold + future paper)

Each TriOS model gives a χ^{2} value for a single point in the parameter-space

- We need to search over $M_{B H}, M / L$ (1 or 2 parameters), shape (3 parameters), and halo (1 or 2 parameters) - at least 6-8 dimensions. (Grid Searches are inefficient)
- This is expensive. Each model evaluation takes 10-30 CPU hours. (Highly iterative searches are impractical)

Efficient Sampling for Triaxial Modelling (Liepold + future paper)

Each TriOS model gives a χ^{2} value for a single point in the parameter-space

- We need to search over $M_{B H}, M / L$ (1 or 2 parameters), shape (3 parameters), and halo (1 or 2 parameters) - at least 6-8 dimensions. (Grid Searches are inefficient)
- This is expensive. Each model evaluation takes 10-30 CPU hours. (Highly iterative searches are impractical)
- As data improves, confidence volumes shrink with $\sim(\text { (Number of Constraints) })^{-D / 2}$

Efficient Sampling for Triaxial Modelling (Liepold+ future paper)

Our Strategy (inspired by Bayesian Optimization and nested sampling):

1. Sparsely populate the space

Efficient Sampling for Triaxial Modelling (Liepold + future paper)

Our Strategy (inspired by Bayesian Optimization and nested sampling):

1. Sparsely populate the space
2. Use Gaussian Process regression to model the χ^{2} landscape

Efficient Sampling for Triaxial Modelling (Liepold + future paper)

Our Strategy (inspired by Bayesian Optimization and nested sampling):

1. Sparsely populate the space
2. Use Gaussian Process regression to model the χ^{2} landscape
3. Populate regions that are likely to be useful

Efficient Sampling for Triaxial Modelling (Liepold + future paper)

Our Strategy (inspired by Bayesian Optimization and nested
sampling):

1. Sparsely populate the space
2. Use Gaussian Process regression to model the χ^{2} landscape
3. Populate regions that are likely to be useful

For our triaxial searches, we used this customized routine and only needed $3000-5000 \sim 4^{6}$ across 3 iterations for a 6D search. ($\sim 80,000$ CPU-hours)

Efficient Sampling for Triaxial Modelling (Liepold + future paper)

Our Strategy (inspired by Bayesian Optimization and nested
sampling):

1. Sparsely populate the space
2. Use Gaussian Process regression to model the χ^{2} landscape
3. Populate regions that are likely to be useful

For our triaxial searches, we used this customized routine and only needed $3000-5000 \sim 4^{6}$ across 3 iterations for a 6D search. ($\sim 80,000$ CPU-hours)

For a reasonable-resolution grid search (10 pt per dimension), we'd need $\mathrm{O}\left(10^{6}\right)$ models - 20,000,000 CPU-hours!

Efficient Sampling of the Shape (Quenneville, Liepold, and Ma 2021b)

- The 3D shape is determined through deprojection of the 2D surface brightness profile (we use MGEs)
- This deprojection requires the choice of 3 parameters - viewing angles (θ, ϕ, ψ) or axis ratios (u, p, q).

Efficient Sampling of the Shape (Quenneville, Liepold, and Ma 2021b)

- The 3D shape is determined through deprojection of the 2D surface brightness profile (we use MGEs)
- This deprojection requires the choice of 3 parameters - viewing angles (θ, ϕ, ψ) or axis ratios (u, p, q).
- Not all choices of these parameters produce valid deprojections $\left(0 \leq q \leq u q^{\prime} \leq p \leq u \leq 1\right)$

Efficient Sampling of the Shape (Quenneville, Liepold, and Ma 2021b)

- The 3D shape is determined through deprojection of the 2D surface brightness profile (we use MGEs)
- This deprojection requires the choice of 3 parameters - viewing angles (θ, ϕ, ψ) or axis ratios (u, p, q).
- Not all choices of these parameters produce valid deprojections ($0 \leq q \leq u q^{\prime} \leq p \leq u \leq 1$)
- We've found an additional set of parameters which map the deprojectible shape space to a unit cube with minimal covariances

$$
T=\frac{1-p^{2}}{1-q^{2}} \quad T_{\mathrm{maj}}=\frac{1-u^{2}}{1-p^{2}} \quad T_{\min }=\frac{\left(u q^{\prime}\right)^{2}-q^{2}}{p^{2}-q^{2}}
$$

Triaxial NGC1453 and NGC2693 (Quenneville, Liepold, and Ma 2021b), (Pilawa, Liepold+22)

NGC1453
NGC2693

Triaxial NGC1453 and NGC2693 (Quenneville, Liepold, and Ma 2021b), (Pilawa, Liepold+22)

NGC1453
NGC2693

Triaxial NGC1453 and NGC2693 (Quenneville, Liepold, and Ma 2021b), (Pilawa, Liepold+22)

NGC1453
NGC2693

Triaxial NGC1453 and NGC2693 (Quenneville, Liepold, and Ma 2021b), (Pilawa, Liepold+22)

NGC1453
NGC2693

Looking Forward: Model Complexity

- Recent papers (Lipka+Thomas 2021+2022) suggest that the model complexity must be taken into account while finding the best-fit models by adding a penalty term to the model χ^{2}
- Our preliminary tests suggest that this issue is significant for axisymmetric models and a bias in inclination is present if the complexity is ignored
- Our preliminary tests find that the issue is far less important for triaxial models and the preferred shape is more-or-less unchanged when reasonable penalty terms are introduced.

Thank you! (Questions?)

Looking Backward

Looking Forward

- Improved search algorithms
- Model Complexity?
- More Galaxies! (Exciting results on the horizon)

