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Abstract

Evidence for the majority of the supermassive black holes in the local Universe has been obtained dynamically
from stellar motions with the Schwarzschild orbit superposition method. However, there have been only a handful
of studies using simulated data to examine the ability of this method to reliably recover known input black hole
masses MBH and other galaxy parameters. Here, we conduct a comprehensive assessment of the reliability of the
triaxial Schwarzschild method at simultaneously determining MBH, stellar mass-to-light ratio M*/L, dark matter
mass, and three intrinsic triaxial shape parameters of simulated galaxies. For each of 25 rounds of mock
observations using simulated stellar kinematics and the TriOS code, we derive best-fitting parameters and
confidence intervals after a full search in the 6D parameter space with our likelihood-based model inference
scheme. The two key mass parameters, MBH and M*/L, are recovered within the 68% confidence interval, and
other parameters are recovered between the 68% and 95% confidence intervals. The spatially varying velocity
anisotropy of the stellar orbits is also well recovered. We explore whether the goodness-of-fit measure used for
galaxy model selection in our pipeline is biased by variable complexity across the 6D parameter space. In our tests,
adding a penalty term to the likelihood measure either makes little difference, or worsens the recovery in some
cases.

Unified Astronomy Thesaurus concepts: Galaxy dynamics (591); Galaxy masses (607); Supermassive black holes
(1663); Early-type galaxies (429); Galaxies (573); Galaxy dark matter halos (1880); Galaxy evolution (594);
Galaxy kinematics (602)

1. Introduction

Since its introduction, the orbit superposition technique of
Schwarzschild (1979) has become a useful tool for performing
detailed dynamical modeling of the internal structures of galaxies.
By integrating a set of representative stellar orbits in an assumed
gravitational potential, a superposition of orbits is constructed to
replicate the stellar kinematics and surface brightness profiles of a
galaxy seen in projection. Schwarzschild’s method was initially
proposed to demonstrate the existence of self-consistent galaxies
with triaxial mass distributions. It has since been extended to
allow for fitting of kinematic and photometric observations (e.g.,
Pfenniger 1984; Richstone & Tremaine 1984, 1985; Rix et al.
1997) and is used to constrain properties of the host galaxy such
as its supermassive black hole mass MBH, stellar mass-to-light
ratioM*/L, dark matter content, intrinsic shape, and stellar orbital
structure.

Despite the wide application of the Schwarzschild method to
real data, its ability to recover known input parameters has only
been tested in a handful of cases, each case with different
underlying assumptions. Early tests of the Schwarzschild method
on simulated data in the three-integral axisymmetric limit
highlighted the advantages and challenges posed by the method
when it was applied to long-slit kinematic data (e.g., Cretton &
Emsellem 2004; Valluri et al. 2004; Magorrian 2006). The
availability of integral-field spectroscopy (IFS) over the past two
decades has led to significantly improved data quality and

number of kinematic constraints. An early application of
axisymmetric orbit modeling to Sauron IFS data of M32 yielded
well-constrained MBH, M

*/L, as well as the inclination angle,
i= 70° ± 5° (Verolme et al. 2002). A subsequent study of
NGC 2974 (also using Sauron IFS data) obtained well-
constrained M*/L and i from axisymmetric modeling of real
data, but tests on simulated data found the inclination to be
marginally constrained; the authors cautioned the validity of the
formal orbit model solution i= 65° ± 2°.5 (Krajnović et al.
2005). Since then, other tests on simulated data using different
axisymmetric orbit codes have found a range of results. For
instance, Appendix A.3 of Siopis et al. (2009) and Appendix C
of Quenneville et al. (2021) reported excellent recoveries ofMBH

and halo circular velocity; Thomas et al. (2007) were able to use
the orbit method to reconstruct the stellar masses and velocity
anisotropies in N-body merger remnants with high accuracy;
Vasiliev & Valluri (2020) recovered the true values of M*/L but
were unable to put strong constraints on MBH and dark matter
halos; Lipka & Thomas (2021) discussed the tendency of the
inclination angle to be biased toward edge-on due to increased
model flexibility.
When the axisymmetric assumption is removed, the Schwarzs-

child method becomes significantly more complicated and
computationally expensive. Triaxial orbit modeling requires the
specification of three unequal axes (or equivalently, three angles)
and integration of new libraries of stellar orbits, so a full
exploration of the galaxy parameter space is much more
computationally intensive than for axisymmetric models. Accord-
ingly, there have been fewer attempts at performing recovery
tests on simulated data. Early tests on mock triaxial Abel galaxies
recovered M*/L and intrinsic axis lengths at 10%–20% accuracy
(van den Bosch et al. 2008; van den Bosch & van de Ven 2009).
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When the same triaxial code was applied to galaxies in
hydrodynamical cosmological simulations, Jin et al. (2019)
found that depending on the assumed halo profile, the mean
stellar mass is underestimated by 13%–24% and the halo mass is
overestimated by 18%–38%. All these tests, however, used the
original 2008 code that had been shown to have 12 wrong signs
in some components of the orbital velocities and various other
issues (Quenneville et al. 2022). Neureiter et al. (2023) reported
robust recovery of MBH and M*/L for several tested orientations
of an N-body merger remnant.

In this paper, we conduct a comprehensive study of the
ability of the triaxial orbit method to simultaneously recover the
intrinsic shape and mass parameters of simulated triaxial
galaxies containing SMBHs, stars, and dark matter. We have
been working to reduce the computational cost of individual
triaxial Schwarzschild models in the triaxial code TriOS
(Quenneville et al. 2021, 2022), as well as improve the
efficiency in exploring the mass and intrinsic shape parameter
space via a non-grid-based likelihood approach to parameter
inference. We apply this efficient parameter inference metho-
dology to a suite of simulated triaxial galaxies, testing the
ability of TriOS to recover known input parameters to our
models while all parameters are varied simultaneously.

An additional aim of this paper is to investigate the extent to
which our triaxial Schwarzschild orbit models are impacted by
varying degrees of statistical complexity in the TriOS models.
It has been a common practice while performing Schwarzschild
modeling to compute a χ2 value associated with a model’s
goodness of fit to a set of observed constraints, and select the
best-fit model that minimizes the χ2. While often effective, this
strategy potentially introduces biases due to the variable
complexity of the underlying models. Intuitively, if models in
some region of the parameter space have more flexibility to fit
the observations, those models may have lower χ2 values as a
simple consequence of that flexibility. A more prudent model
selection procedure, therefore, should balance a combination of
the fit quality and a measure of the complexity of a model.

It is, however, nontrivial to quantify the complexity of a
model. The number of degrees of freedom (DOF) is often used
for linear models without constraints because the number of
nonredundant free parameters in a model provides a natural
measure of the model complexity, or flexibility in overfitting.
While subtleties exist in the use of DOF for unconstrained linear
models, the problem of how to capture complexity is even
thornier for linear models with constraints or priors (and hence
with reduced model flexibility), or for nonlinear models (Andrae
et al. 2010). Different forms of complexity measure, or
information criterion, for the effective number of parameters in
a model, have been proposed, e.g., Akaike information criterion
(Akaike 1998), Takeuchi information criterion (Shibata 1989),
Bayesian information criterion (Schwarz 1978), network infor-
mation criterion (Murata & Yoshizawa 1994), and a Bayesian
measure (Spiegelhalter et al. 2002). Ye (1998) suggests a
generalized DOF that measures how sensitive the model
predictions are to perturbations in the model constraints. A
model with higher complexity or flexibility is one whose
predictions are more responsive to those perturbations. Follow-
ing Ye (1998), Lipka & Thomas (2021) constructed an estimate
of the complexity of axisymmetric Schwarzschild orbit models.
Here, we examine the role of penalty terms for triaxial orbit
models in simulated galaxies.

The paper is laid out as follows. Section 2 summarizes the
Schwarzschild orbit method and our procedure for constructing
simulated galaxy kinematics. Section 3 outlines the main results
of the paper, including a description of the parameter inference
scheme used to compute our parameter estimates and corresp-
onding confidence intervals. In Section 3, we briefly discuss
estimating the statistical complexity of triaxial Schwarzschild
models, and the extent to which taking into account the model
flexibility changes our parameter estimation. Section 5 sum-
marizes the results and the outlook for future triaxial stellar
dynamical modeling efforts.

2. Dynamical Modeling and Simulated Data

2.1. Triaxial Schwarzschild Orbit Modeling

Throughout this work, we perform triaxial Schwarzschild
orbit modeling with the TriOS code (Quenneville et al.
2021, 2022), which is based on an earlier unnamed triaxial
modeling code (van den Bosch et al. 2008). In this method, a
stationary gravitational potential is proposed, and a library of
orbits spanning the phase space is integrated. A set of weights
is assigned to these orbits such that the linear superposition of
the orbits can both reproduce the mass distribution associated
with the gravitational potential and fit a set of kinematic
observations. This procedure enforces self-consistency between
the mass distribution and gravitational potential without
requiring specific assumptions about the form of the distribu-
tion function or velocity anisotropy.
The mass components of a galaxy in TriOS can consist of a

central SMBH with mass MBH, a stellar component with a
mass-to-light ratio M*/L, and a dark matter halo. Most prior
work using the Schwarzschild orbit method has assumed a
spherical or axisymmetric potential; TriOS relaxes these
assumptions and allows triaxially shaped 3D stellar mass
densities. The stellar mass density is determined by first
modeling the 2D (observed) surface brightness distribution of a
galaxy as a multi-Gaussian expansion (MGE; Cappellari 2002).
For a given set of angles θ, f, and ψ that relate the intrinsic
(3D) and projected (2D) coordinate systems, we deproject each
component of the MGE and sum them to create the 3D stellar
density. Each MGE component (labeled by subscript j) is
allowed to have its own 2D axis ratio, ¢q j, which is the ratio of
the lengths of its semiminor and semimajor axes. Through the
relations in the appendix of Quenneville et al. (2022), the
intrinsic axis ratios are determined: pj= bj/aj is the intrinsic
middle-to-long axis ratio; qj= cj/aj is the intrinsic short-to-
long axis ratio; and uj is the apparent-to-intrinsic long axis
ratio. When performing parameter searches and inferences
below, we follow Quenneville et al. (2022) and use an
alternative set of shape parameters, T, Tmaj, and Tmin. The
definitions and advantages of these parameters are articulated in
Section 3 of Quenneville et al. (2022).
For each galaxy model, the TriOS code samples the phase

space with a set of representative stellar orbits and integrates
their trajectories. The orbits are initiated in two separate spaces:
the x–z and the stationary start spaces, where the x-, y-, and z-
axes are directed along the intrinsic major, intermediate, and
minor axes of the galaxy, respectively. In each space, NE values
of the orbital energy are sampled. In the x–z start space, orbits
of a given energy are initialized on a polar grid in the x–z plane
along NI2 rays uniformly spaced in angle from the z-axis to the
x-axis, and at NI3 positions along each ray (see Figure 4 of
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Quenneville et al. 2022). Each orbit has initial velocities of
vx= vz= 0 and vy> 0. In addition, a set of retrograde orbits is
constructed by simply inverting the velocities of orbits in the
prograde x–z orbit library, and seven additional copies of each
orbit are generated through the mirroring scheme described in
Quenneville et al. (2022). In the stationary start space, orbits of
a given energy are initiated with zero velocities at positions on
the equipotential surface sampled on a uniform grid over the
two spherical angles θ and f. To enhance phase-space
sampling, the code allows for dithering the initial conditions,
by which the number of sample points along each of the three
dimensions of the start space is increased by a factor of Ndither,
resulting in an overall factor of Ndither

3 increase in the phase-
space sampling. The properties of bundles of Ndither

3 adjacent
orbits are averaged and each bundle of orbits is given a single
orbital weight when constructing the superposition.

Each orbit is projected onto the sky, and its line-of-sight
velocity distribution (LOSVD) within Nbin spatial apertures is
stored. Its mass distribution in a 3D grid is also stored. We
perform a non-negative least squares (NNLS) optimization to
determine a set of orbit weights such that the superposition of
orbits reproduces both the 3D stellar mass distribution
(obtained from deprojection of observed surface brightness
distribution) and the observed LOSVD in each spatial bin. The
LOSVD is characterized by a set of Gauss–Hermite moments
(van der Marel & Franx 1993), and the NNLS objective
function consists primarily of the χ2 associated with the
reproduction of those observed moments (see Equation (1)).
The models contain Nkin kinematic constraints, which are equal
to the product of the number of spatial apertures and the
number of Gauss–Hermite moments used to characterize the
LOSVDs. The mass self-consistency is enforced by adding
additional χ2-like terms to the NNLS objective function that
are associated with the mismatch between the input’s and
model’s mass in each of the 3D grid cells and within each of
the 2D spatial apertures with a 1% error imposed on each mass.
The phase-space distribution function for the galaxy model can
be understood as being composed of this set of orbit weights.

2.2. Generation of Simulated Galaxy Data

We use the Schwarzschild method to create simulated stellar
kinematics for a suite of model galaxies, each of known mass
components and a known intrinsic shape. For the simulated
data to provide useful insight into actual observations, we opt
to create stellar kinematics that mimic those observed in real
galaxies. We achieve this by building the simulated galaxy
kinematics using the measured kinematics of a real galaxy as a
template. Here, we use the kinematics of NGC 2693 presented
in Pilawa et al. (2022), which are typical of those known for
massive elliptical galaxies in the MASSIVE survey (Ma et al.
2014). Since these kinematics are only used as a starting
template, we do not expect the main conclusions of this paper
to depend strongly on the particular galaxy choice. We note
that while the velocity anisotropy profiles investigated here
tend to be tangential at small radii and radial at large radii
(Figure 6 of Pilawa et al. 2022; Figure 3 here), this profile is not
unique to NGC 2693. Similar profiles are found for many
massive galaxies that have been studied with the orbit
modeling method (e.g., Extended Data Figure 6 of Thomas
et al. 2016). A different procedure would be needed to produce
a qualitatively different velocity anisotropy profile.

Six parameters were determined for NGC 2693: SMBH mass
MBH, the stellar mass-to-light ratio M*/L, the dark matter mass
enclosed within a radius of 15 kpc M15, and three shape
parameters (T, Tmaj, Tmin), or equivalently, the luminosity-
averaged axis ratios (p, q, u). The dark matter halo is
logarithmic with a fixed scale radius of Rc= 15 kpc. To
generate simulated stellar kinematics for a given galaxy model
Gi listed in Table 1, we first run TriOS to compute the orbit
libraries representing this galaxy and determine the set of orbit
weights with a regularization scheme (see below) such that the
model’s projected kinematics best reproduce those of real
observations of NGC 2693. We then perturb this model’s
noise-free projected kinematics with Gaussian noise with seed r
and amplitude set by the observed uncertainties on each
measurement.
While determining the orbital weights of the simulated

galaxies described above, we incorporate the distribution
function regularization scheme outlined in Section 5.2 of van
den Bosch et al. (2008). This scheme penalizes the goodness-of-
fit statistic when fitting the orbital weight distribution by a term
proportional to the second derivative of the orbital weights with
respect to the orbits’ indices in their start space. This procedure
yields distribution functions that are substantially smoother in
phase space than can be obtained in models without regulariza-
tion. The stellar masses in regularized models are represented by
many more orbits than in nonregularized models. For example,
for the galaxy model that best reproduced the data in Pilawa
et al. (2022), nonregularized models had 99%, 99.9%, and
99.99% of the mass in 298, 365, and 397 of the 14,040 orbits in
the library, respectively; while regularized models have the same
percentages of the mass represented by ∼5100, ∼6400, and
∼7200 orbits, respectively. Here, we use regularization as a way
to generate simulated galaxy kinematics that are represented by a
wide variety of orbital weights. In the tests below, we will assess
the ability of the TriOS code to recover the input galaxy
parameters without using regularization, as is commonly done
when the Schwarzschild method is applied to real data to
measure MBH and other parameters.
In this work, we generate simulated kinematics for five

different locations in the 6D parameter space, which are labeled
G1–G5 and listed in Table 1. These parameter values are chosen
to span a broad range in each dimension, but narrow enough
that the models can be explored with a reasonably sized

Table 1
Mass and Shape Parameters for the Five Triaxial Galaxy Models Tested in

This Work

Model G1 G2 G3 G4 G5

MBH [109 Me] 2.1 1.7 1.0 2.4 1.3
M*/L [Me/Le] 2.23 2.31 2.43 2.25 2.28
M15 [10

11 Me] 5.5 8.9 10.2 5.5 6.0
T 0.39 0.47 0.46 0.49 0.41
Tmaj 0.04 0.17 0.26 0.25 0.10
Tmin 0.07 0.09 0.06 0.05 0.09
u 0.997 0.982 0.971 0.970 0.991
p 0.909 0.886 0.885 0.878 0.902
q 0.746 0.733 0.729 0.731 0.739

Note.MBH is the SMBH mass,M*/L is the stellar mass-to-light ratio,M15 is the
dark matter mass enclosed within a radius of 15 kpc, and T, Tmaj, and Tmin are
the three shape parameters specifying the triaxial potential. The axial ratios u,
p, and q are related to the shape parameters and are computed here by taking
luminosity-weighted averages over the MGE components (see the text).
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collection of orbit models. This allows us to test the ability of
the orbit code to recover model parameters over a wide range of
physically reasonable values. We recall that the axis ratios
(p, q, u) must obey the inequality ¢    q uq p u0 1,
where ¢ = ¢ ¢q b a is the observed axis ratio of the 2D projected
galaxy shape (e.g., Quenneville et al. 2022), and only a
subspace of (p, q, u) has 3D shapes that could produce the
required flattening ¢q upon projection. The range of allowed
(p, q, u) is therefore typically quite narrow.

For each galaxy model Gi, we perform five draws of random
Gaussian noise and add it to the galaxy model’s noise-free
projected kinematics. The amplitudes of the injected noise are
chosen to resemble those inherent in real data, so the five
realizations mimic repeated observations of the same galaxy
and allow us to assess the uncertainties in the recovery test for
each of the simulated galaxies. The different noise realizations
are labeled r1–r5.

In total, we have 25 sets of simulated stellar kinematics for
five models of realistic galaxies. Next, we treat each of the 25
sets of kinematics as a mock observation of a galaxy, and
perform recovery tests over the full 6D parameter space to
search for the best-fit parameters.

3. Parameter Inference and Recovery Test

In this section, we present the results of the 25 recovery tests
and compare the inferred model parameters against the known
input parameters of each simulated galaxy to assess how well
the procedure recovers the model parameters. The computa-
tional cost is substantial and is akin to performing triaxial
Schwarzschild orbit modeling and parameter inference for 25
galaxies.

For each of the five realizations for a given galaxy model in
Table 1, we treat the mock galaxy’s projected kinematics as
simulated data and perform a 6D parameter space search
following the grid-free procedure we have developed for recent
analyses of real data (e.g., Pilawa et al. 2022; Quenneville et al.
2022; Liepold et al. 2023). In this procedure, a grid-free Latin
hypercube scheme is used to choose sampling points in the
galaxy model parameter space (about 3000 models in this
work). For each sampled model, we run TriOS and compute a
goodness-of-fit metric associated with the model predictions
compared to the input kinematics. To mimic the procedure used
in orbit modeling of real data, we do not use regularization in
this step (see discussion in Section 2.2). The metric, hereafter
referred to as the log-likelihood, is given by

 ååm m
m

c- = =
-

D
( ) ( )

( ( ) )
( )

h h

h
2 ln , 1

j

N

i

N
ij ij

ij
kin
2 ,input

2

,input
2

bin GH

where hij is the ith Gauss–Hermite moments of the stellar
LOSVDs in the jth spatial bin, Δhij is the associated
measurement uncertainty, and μ is the set of six parameters
describing the galaxy’s potential. For the template galaxy NGC
2693 used in this work, Gemini GMOS IFS yielded 60 spatial
bins, each with eight Gauss–Hermite moments, for the central
5″× 7″ region of the galaxy, and the McDonald–Mitchell IFS
yielded 29 bins, each with six moments, for the outer part of the
galaxy (Pilawa et al. 2022); together, the total number of
kinematic constraints is Nkin= 654.

Adopting the parameter inference procedure used in our
prior work (Pilawa et al. 2022; Quenneville et al. 2022; Liepold
et al. 2023), we first construct an interpolated log-likelihood

surface from the discrete set of evaluated models using
Gaussian process regression (Rasmussen & Williams 2005)
with a Matérn covariance kernel with ν= 3/2. The resulting
Gaussian process mean function is used as a smooth surrogate
function for the true log-likelihood surface. The dynamic
nested sampler dynesty (Speagle 2020) is then used to
sample this smooth log-likelihood function and to produce a
posterior assuming uniform priors on each parameter.
A typical outcome of our recovery tests is shown in Figure 1,

where the 1D and 2D marginalized posteriors for the six model
parameters in realization r5 of model G4 are plotted. The true
input values of the model parameters (orange circles) are well
recovered, lying within the 95% confidence interval of the best-
fit model for all six parameters.
The results for all 25 recovery tests are summarized in

Figure 2. The input parameter values are shown in the legend of
each panel and in Table 1. Overall, these results show an
excellent recovery of the input parameters for (i) individual mock
realizations (small dots), (ii) when averaging over five realiza-
tions for each galaxy model Gi (big circles), and (iii) when
averaging over all 25 tests (big square). In particular, the two key
mass parameters—black hole mass and stellar mass-to-light ratios
—are consistently recovered within the 68% confidence interval.
For other parameters, while there are some variations across
different realizations and galaxy models, the gray squares indicate
that the average bias is consistent with 0 for all parameters.
In addition to recoveries of galaxy model parameters, we can

also assess the ability of the TriOS code to recover the
intrinsic properties of the simulated galaxies. One such key
property is the velocity anisotropy, typically parameterized by
b s sº -1 t r

2 2, where σr is the radial velocity dispersion, and
σt is the tangential velocity dispersion with s s sº +q f( ) 2t

2 2 2 .
The value β= 0 indicates velocity isotropy, while a negative
(positive) β indicates tangential (radial) anisotropy.
Figure 3 shows the velocity anisotropy of the five simulated

galaxies (black-dashed curve in each panel) is preferentially
tangential b <( )0 near the centers of the galaxies and
preferentially radial b >( )0 beyond ∼1 kpc. The β profiles
from the five lowest χ2 models (one for each ri) in our recovery
tests are shown as a solid color band in each panel, with the
band corresponding to the mean and standard deviation in β at
a given radius. We include β= 0 as the dotted gray line to
guide the eye. Our tests recover the simulated β profiles quite
well, with the largest discrepancies near the innermost and
outermost portions of the galaxy. This trend in the innermost
region has been noticed in anisotropy recovery studies before,
but has been attributed to a number of different factors,
including the relative paucity of orbits/mass in this innermost
region (Breddels et al. 2013; Kowalczyk et al. 2017).
One feature in Figure 2 is the tendency toward over-estimation

of the dark matter mass parameter M15 in three of five galaxy
models (G1, G4, G5) at the ∼1σ level. While this trend could be
simply due to the small number of statistics, there are factors that
could make the halo parameter less well constrained than other
parameters. In general, the constraint on the halo is driven by the
outermost portion of the kinematic data since this is the region in
which the enclosed dark matter mass starts to become
comparable to that of the stars. Due to the rapidly decreasing
surface brightness in the outer regions of galaxies, we must
coadd stellar spectra over a much larger area of the sky to
achieve a reasonable signal-to-noise ratio. Furthermore, our outer
data were obtained from the wide-field Mitchell IFS on a 2.7 m
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telescope, while the inner data were from the high-resolution
GMOS on an 8.1 m telescope. The larger uncertainties in the
outermost kinematic data points thus allow for larger perturba-
tions when we generate the simulated galaxy kinematics. In
addition, our recipe for computing the simulated Gauss–Hermite
moments thus far does not take into account the correlations in
the uncertainties in the moments (Houghton et al. 2006). These
factors together can potentially bias the halo parameter more than
the other parameters in our model.

4. Model Complexity and Impact of Penalty Terms

As discussed in Section 1, in the framework of classical
statistic modeling, increasing the complexity of a model
generally results in a better goodness-of-fit statistic. If the

complexity is variable across models, the apparent goodness of
fit may be biased by the variable complexity. In this section, we
examine this issue by adding a term to our log-likelihood
function of Equation (1) in the form of

 m m mk-  - +( ) ( ) ( ) ( )2 ln 2 ln , 2

where κ is a penalty term used to capture a model’s
complexity. Various forms of κ have been proposed in the
literature (see Section 1) to penalize the models in the
parameter space with more complexity and alleviate any
resultant biases in the inferred model parameters.
Intuitively, κ can be interpreted as serving a similar role as

the Bayesian prior probability distribution. Just as the prior
changes the shape of the posterior probability distribution given

Figure 1. (Lower left) 1D and 2D marginalized posteriors of the six model parameters in an example recovery test (realization r5 of model G4). The 68%, 95%, and
99% confidence interval contours are represented by the different shades of purple in the 2D panels, and the 1D marginalized posteriors are shown in the 1D panels.
The true input value for each parameter is represented by the orange-filled circle and orange vertical line in each panel. (Upper right) 1D and 2D marginalized
posteriors in the axis–ratio space of (p, q, u), computed from the (luminosity-weighted) posteriors of ( )T T T, ,maj min .
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some previous knowledge of the parameter space, the shape of
the penalty term κ(μ) adjusts the goodness-of-fit landscape in
our study, mc ( )kin

2 , to correct for variability in model
complexity as a function of the parameter space location μ.
In regions in which the model complexity κ is high, the
goodness-of-fit ckin

2 should tend to be lower, and the relative
trade-off of these two quantities yields the final inferred
locations by subtly displacing the minimum of the modified
log-likelihood landscape.

Here, we consider the complexity measure proposed in Ye
(1998) and adopted in Lipka & Thomas (2021). Those works

compute a generalized DOF that is related to the ability of the
model to respond to small perturbations in the model
constraints. Intuitively, a model with a higher complexity
(or flexibility) will be more responsive to those small
perturbations, while a simple (or inflexible) model will be less
responsive. In our application, the constraints are given by the
observed stellar kinematic moments and the goodness of fit is
described by the log-likelihood. To measure the flexibility of a
given model, we perturb the stellar kinematic predictions from
that model a refit the model given those perturbed kinematics.
The complexity (or flexibility) of the model is related to the

Figure 2. Results of the 25 rounds of recovery tests for the galaxy model parameters. The upper three panels denote the supermassive black hole mass MBH, stellar
mass-to-light ratio M*/L, and enclosed dark matter mass at 15 kpc. The middle panels show the recovered intrinsic shape parameters T, Tmaj, and Tmin, and the bottom
panels show the same shape recovery but for the more intuitive luminosity-averaged axis ratios u, p, and q. In each panel, the difference between the input parameter
value (listed in the legend) and the recovered value is shown; the black-dashed vertical line indicates the exact recovery of that parameter. The five galaxy models G1–

G5 are grouped by colors. Within each color group, the small dot denotes the recovery result for one noise realization of model Gi, where the error bars represent the
68% credible region of the posterior samples (see Figure 1 for an example). The larger filled circle for each Gi model is the mean recovered value for the five
realizations, where the error bars denote the median uncertainty of the realizations. The large gray square at the bottom of each panel shows the mean over all 25
recovery tests, where the error bars denote the median value of the uncertainties of the 25 tests.
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amount of improvement in the log-likelihood after this refitting.
For flexible models, the improvement is large, while for
inflexible models, the improvement is smaller. This scheme

empirically connects variations in the data directly to variations
in the goodness of fit on a model-by-model basis without making
significant assumptions about the form of the modeling.
The specific steps used to compute the penalty term are as

follows. We first fit a set of galaxy kinematics using a
Schwarzschild model with parameters μ. We then perturb this
model’s kinematic moment predictions using Gaussian-dis-
tributed random values whose amplitudes are equal to the
original measurement errors. We generate 20 realizations of
these perturbations. For each realization, a χ2-like term cprior,i

2

is computed, which describes the difference between the
perturbed and unperturbed moments. This quantity only
depends on the number of kinematic moments that have been
perturbed, with cá ñ = Nprior,i

2
kin. We then reoptimize the orbital

weights in the Schwarzschild model to fit these perturbed
kinematics, resulting in a goodness-of-fit mc ( )posterior,i

2 . The
difference in these two quantities is taken to be a measure of the
complexity with m mc c- º( ) ( )mprior

2
posterior
2

eff , appropriately
averaged across the 20 realizations. For a given set of galaxy
model parameters, this procedure is identical to generating a
simulated galaxy with those parameters, and then fitting the
simulated data with the same set of parameters. This is repeated
for each of the ∼3000 models in our sample of orbit models
used for the analyses in the previous section.
The recovered parameters for the five simulated galaxies using

the original likelihood  (circles; same as in Figure 2) versus the
penalized likelihood (squares) are shown in Figure 4. Each
symbol represents the mean value (relative to the true value) over
the five noise realizations, and the uncertainty is taken to be the
median uncertainty of the realizations. Overall, there are only
small differences in the resulting best-fit parameters and
confidence intervals, and the average recovered values and
median uncertainties are all consistent with one another at the
68% confidence level. The surface of our penalty term as a
function of galaxy parameters is generally quite flat and shows
no consistent structure. In some cases in Figure 4, adding the
penalty term, in fact, moves the recovered median value away
from the true value. This first exploration of model complexity
for triaxial models, therefore, indicates that both the mass and
shape parameters of a simulated triaxial galaxy are well
recovered using our likelihood function without a penalty term.
When axisymmetry is imposed in orbit models, Lipka &

Thomas (2021) find their penalty term to be essentially
monotonically increasing with increasing galaxy inclination
angle i. The source of this dependence was attributed to the
orbital structures of an axisymmetric potential as follows. A
fair phase-space sampling of an axisymmetric galaxy includes
both a prograde and a retrograde copy of every orbit. In the
edge-on axisymmetric limit, these two orbits have opposite
signs in the line-of-sight velocities and can contribute
maximally to the model LOSVDs. In the face-on limit, on
the other hand, the velocities of these two orbits are
perpendicular to the line of sight, and the prograde and
retrograde orbits contribute essentially identically to the
resultant LOSVD. The inclination-dependent degeneracy
between the prograde and retrograde orbits yields an effectively
smaller number of distinct orbits for oblique and maximally
face-on inclinations than edge-on inclinations, resulting in
models with edge-on inclinations having more flexibility to
produce good fits to the input data.
Triaxial potentials admit a larger suite of orbital types with

more complicated structures and less symmetry than

Figure 3. Profile of the velocity anisotropy parameter, b s sº -1 t r
2 2, for the

five simulated galaxies G1–G5 (top to bottom; black-dashed curves). At each
radius, the colored band indicates the standard deviation of β from the recovery
tests of the five realizations for the given galaxy model.
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axisymmetric potentials. The inclination angle for an axisym-
metric galaxy is replaced by three angles, or equivalently, three
shape parameters (e.g., van den Bosch et al. 2008; Quenneville
et al. 2022). While adding a penalty term improved the
recovery of the inclination angle in axisymmetric mock models,
we do not find such a term to be necessary for triaxial models.

5. Conclusion

We have presented a study on the accuracy and reliability
of recovering known sets of input galaxy mass and shape
parameters using the triaxial Schwarzschild orbit modeling
code TriOS. We generated 25 sets of simulated galaxy
kinematics and performed a full search in the 6D parameter
space using our likelihood-based inference scheme to derive

best-fitting parameters and confidence intervals. Treating the
goodness of fit as proportional to a Bayesian log-likelihood,
we produced posterior probability distributions for each
parameter using dynamic nested sampling. The computational
cost of this study is similar to that of performing full-scale
triaxial Schwarzschild orbit modeling and parameter infer-
ence for 25 galaxies.
The outcome of this study indicates robust recovery of both

the parameters defining the galaxy potential (Figures 1 and 2)
and internal orbital structures such as the stellar velocity
anisotropy profiles (Figure 3). In particular, the two key mass
parameters in the galaxy models—black hole mass and the
stellar mass-to-light ratio—are always recovered within the
68% confidence interval of the true values.

Figure 4. Effect of adding a penalty term to the log-likelihood function (see Equation (2)) in the recovery tests. The filled circles are identical to those in Figure 2 and
denote the mean difference between the recovered and true parameter values of the five noise realizations for each galaxy model Gi. The corresponding result after
including a penalty term is shown as squares. A penalty term leads to no improvement in parameter recovery.
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We additionally estimated the statistical model complexity of
the triaxial models and tested the impact of this penalty term on
the resulting parameter estimation. In contrast to recent tests of
axisymmetric orbit models, we find that penalty terms quantifying
the varying model-to-model complexity do not appreciably alter
the shape of the likelihood landscape, nor do they significantly
impact the location of the best-fitting models (Figure 4). At best,
the posteriors obtained with the inclusion of a penalty term
reproduce the posteriors obtained without a penalty term; at worst,
the addition of a penalty term artificially increases the sizes of the
confidence intervals, weakening the overall statistical power of
the models and parameter inference scheme.

Taken together, our results suggest that triaxial Schwarzs-
child orbit modeling with the TriOS code, when combined
with dense sampling of the 6D parameter space and our
parameter inference scheme, can simultaneously recover
known mass parameters (for black holes, stars, and dark
matter) as well as triaxial galaxy shape parameters without the
need of a penalty term to compensate for model complexities.
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