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ABSTRACT
We report the results of molecular dynamics simulations of the properties of a pseudo-atom (united atom) model of dodecane
thiol ligated 5-nm diameter gold nanoparticles (AuNPs) in a vacuum as a function of ligand coverage and particle separation
in three states of aggregation, namely, the isolated AuNPs, the isolated pair of AuNPs, and a square lattice of four AuNPs. Our
calculations show that the ligand density along a radius emanating from the core of an isolated AuNP has the same gross fea-
tures for all values of the coverage; it oscillates around a constant value up to a distance along the chain corresponding to
the position of the fourth pseudo-atom and then smoothly decays to zero, reflecting both the restricted conformations of the
chain near the core surface and the larger numbers of conformations available further from the core. Interaction between two
AuNPs generates changes in the ligand distributions of each. We examine the structure and general shape of the ligand enve-
lope as a function of the coverage and demonstrate that the equilibrium structure of the envelope and the deformation of that
envelope generated by interaction between the NPs are coverage-dependent so that the shape, depth, and position of the mini-
mum of the potential of mean force display a systematic dependence on the ligand coverage. We propose an accurate analytical
description of the calculated potential of mean force as a function of a set of parameters that scale linearly with the ligand
coverage. Noting that the conformational freedom of the ligands implies that multiparticle induced deviations from additivity
of the pair potential of mean force are likely important; we define and calculate a “bond stretching” effective pair potential of
mean force for a square lattice of particles that contains, implicitly, both the three- and four-NP contributions. We find that
the bond stretching effective pair potential of mean force in this cluster has a different minimum and a different well depth
from the isolated pair potential of mean force. Previous work has found that the three-particle contribution to deviation from
pair additivity is monotonically repulsive, whereas we find that the combined three- and four-particle contributions have an
attractive well, implying that the three- and four-particle contributions are of comparable magnitude but opposite sign, thereby
suggesting that even higher order correction terms likely play a significant role in the behavior of dense assemblies of many
nanoparticles.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5064545

I. INTRODUCTION

Interest in the self-assembly into stable monolayers of
nanoparticles with tunable electronic, optical, and magnetic
properties has been driven by the opportunities to design
devices that are very thin yet remarkably strong.1–9 The con-
stituents of such a monolayer are typically Au and semicon-
ductor nanocrystals (cores) that are covered with organic

molecule ligands, hereafter referred to as nanoparticles (NPs).
A ligand dressed nanocrystal is a very complicated many
body system, so theoretical analyses of its properties, whether
isolated or assembled in a monolayer, necessarily utilize sim-
plified models of the ligand structure and the molecular
interactions. A substantial number of molecular dynamics
simulation studies of the ligand structure of isolated NPs and
of the interactions between NPs that utilize these models have
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been reported.10–37 The more sophisticated of these investiga-
tions involve simulations that use full atom10–18 and pseudo-
atom (united atom) force fields,19–29 amongst which are a
few investigations of the importance of the three NP inter-
action level deviation from additivity of the pair potential of
mean force.23,24,38–40 The results obtained from these simula-
tions establish that the interaction between the ligands of the
dressed nanoparticles, not the core-core interaction, deter-
mines the NP monolayer mechanical properties. The inter-
pretations of the results of the simulations derived from the
several approaches, taken together, are qualitatively consis-
tent, albeit with some differences that are specific to the
model representations of the NP. For the much-studied NP
with the Au core, the most important common features of the
NP ligand structure and the NP-NP interaction obtained from
the calculations can be broadly characterized as follows: First,
in a vacuum:

(1) The distribution of conformations of the ligands that
dress an isolated Au core is sensitive to the core size
and ligand density but relatively insensitive to the core
shape except for small (<3 nm) cores.10,18,27,28,36 The
angular distribution of ligands bound to a small core
is much broader and more nearly uniform than that of
ligands bound to a large core due to the lower maxi-
mum density of ligand dressing of the facets of a small
core.17,26,27,34

(2) For typical ligands, at the minimum of the NP-NP pair
potential of mean force the core-core interaction is neg-
ligible relative to the ligand-ligand interaction. The equi-
librium separation and the well depth of the NP-NP pair
potential of mean force increase with the ligand length
and the ligand dressing density.24,29,37

(3) Because each NP is a complex system with many degrees
of freedom, in a many NP assembly there are important
deviations from additivity of the pair potential of mean
force so that the effective force between a pair of parti-
cles is affected by the presence of third, fourth, . . ., prox-
imate particles. The available calculations show that the
three-particle correction to additivity of the pair poten-
tial of mean force is an everywhere repulsive function of
the NP-NP pair separation.23,35,36

(4) When NPs with small cores are assembled in a two-
or three-dimensional crystal, there is a threshold lig-
and coverage, dependent on the ligand length, below
which the Au cores sinter. In a three-dimensional face
centered cubic crystal composed of NPs with Au cores
of 2.8 nm diameter that are dressed with hexane thiol
ligands that threshold is about 50% coverage; when
dressed with decanethiol that threshold is about 80%
coverage.23
Second, when the NPs are immersed in solvent:

(5) The dry (vacuum) and wet (immersed in solvent) NP-
NP pair potentials of mean force are very different.
When the NP is immersed in a solvent, the ligand con-
formations depend on the qualitative character of the
ligand-solvent interaction.13,16,19–21,25,30,31 Using poly-
mer chemistry terminology, a good solvent is one in

which the ligand is soluble and in which it has extended
conformations; a bad solvent is one in which the ligand
is insoluble and in which it has compact conformations.
Consequently, the wet NP pair potential of mean force
is, typically, everywhere repulsive when the solvent is
good and has a strong minimum when the solvent is
bad.11,12,14,15,22,32

A NP monolayer is typically dry, so its mechanical prop-
erties should be traceable to characteristic features of the
ligand structure and consequent NP interactions in a vac-
uum. The information available concerning these features
has gaps that need to be filled for a better understanding
of the source of the strength and other mechanical prop-
erties of a dry NP monolayer, specifically how these prop-
erties depend on the ligand structure and more information
on the role played by the environment of the monolayer.
Reports of the role of the environment have, to date, only
concerned the case of NPs in a dense liquid solvent. How-
ever, the influence of solvent on the NP-NP interaction is
perceptible on exposure to a very small amount of solvent.
For example, experiments reveal that the exposure of a dry
AuNP monolayer to water vapor, and its removal, generates a
reversible change of the Young’s modulus by almost one order
of magnitude.41 Understanding how the low concentration of
water molecules at room temperature ambient vapor pres-
sure can generate a large change in the mechanical properties
of a NP monolayer requires a detailed treatment of water-
ligand interactions and the consequent ligand conformation
changes.

In this paper, we contribute to a better understanding
of the relationships between ligand conformation, ligand shell
redistribution, and the character of the NP pair potential of
mean force in a vacuum. We report the results of simulations
of the interaction between model nanoparticles consisting of
gold cores ligated with dodecane thiol (CH3(CH2)11S) chains
using a pseudo-atom representation of the ligand chains. In
addition to their intrinsic interest, these simulations of the
NP-NP pair potential of mean force provide a foundation for
studying the importance of many particle contributions to the
interaction in an assembly of NPs, a subject we address in
Sec. IV.

The results of our simulations add to the description of
the dry NP-NP interaction in the following ways:

(1) Our calculations of the interaction between two NPs
with dodecane thiol dressed 5 nm Au cores include a
wide range of ligand coverages; they reveal the changes
in ligand conformations, the changes in position and
depth of the minimum of the pair potential of mean
force, and the change in shape of that minimum, as a
function of ligand coverage.

(2) We develop an accurate analytic representation of the
pair potential of mean force as a function of NP-NP
spacing that is valid over the full range of ligand cov-
erage that permits its calculation for arbitrary ligand
coverage.

(3) We report calculations of the variation in the number
density of atoms along the ligand chain as a function of
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ligand coverage in an isolated NP, revealing how very
restricted intra-molecular atomic motion near the sur-
face yields to much less restricted motion of the ligand
chain beyond four atoms from the binding site.

(4) We show that the general shape of the distribution
of ligands around the core is affected by the NP-NP
interaction in different ways for different coverages. Our
calculations of the number density of atoms along the
ligand chain for different ligand coverages as a func-
tion of angular difference from the NP-NP centerline
reveal the response of the ligand chain distribution to
ligand-ligand overlap.

(5) We provide an estimate of the many NP induced devi-
ation from additivity of the pair potential of mean force
that arises from three- and four-particle proximity to a
pair of NPs. Our estimate uses a different representation
of the non-additivity from commonly reported.40 Rather
than explicitly calculating the incremental third NP and
fourth NP contributions to the effective force between a
pair of NPs, we exploit the very limited range of the pair
potential of mean force to define an effective pair poten-
tial of mean force and its variation with NP-NP separa-
tion. Our effective pair potential of mean force contains
contributions from proximate third and fourth NPs. It is
obtained from calculations of the total interaction free
energy of a square configuration of four NPs followed by
division by the number of NP-NP nearest neighbors; its
separation dependence is determined by varying the side
length of the square. The definition clearly includes the
contributions to the nearest neighbor interaction from
proximate third and fourth NPs, subject to the approxi-
mation that the NP-NP interaction along the diagonal of
the square is negligibly small. The latter approximation
is consistent with the range of the isolated NP-NP pair
potential of mean force. The calculated combined three-
and four-particle interaction correction to additivity of
the pair potential of mean force has a consistent depen-
dence on ligand coverage. Accounting for these interac-
tions generates an effective pair potential of mean force
with an equilibrium spacing that increases with increas-
ing ligand coverage but, compared with the correspond-
ing isolated NP-NP pair potentials of mean force, has
a smaller well depth when the ligand coverage is large
(96%) and a greater well depth when the ligand coverage
is small (32%).

(6) The three- and four-particle interaction corrections to
additivity of the pair potential of mean force are of com-
parable magnitude, which suggests that contributions to
the effective pair potential of mean force from proximity
to yet more particles, e.g., fifth and sixth neighbors in a
two-dimensional array, may be significant.

II. PSEUDO-ATOM MODEL AND CALCULATION
DETAILS

As a prelude to the description of our simulation model
and details of our calculations, it is worthwhile to collect some
general observations. Because a single dressed nanoparticle is

a complex system with many degrees of freedom, a key ingre-
dient in the NP-NP interaction is the response of the ligand
conformations to changing particle-particle separation. Cal-
culation of the change in free energy that follows execution of
a change in that separation involves averages over all confor-
mations of the dressing ligands and, when relevant, NP rota-
tions. Nanoparticles in a liquid suspension are free to rotate,
whereas NPs in a dry film are constrained to not rotate by
virtue of the ligand-ligand interactions. If the ligands bound
to the nanoparticle are mobile on the core surface, the free
energy change that accompanies changing the separation of
the NPs also involves averaging over the responsive alteration
in the surface distribution of ligands. And, as already men-
tioned in the Introduction, since the presence of a proximate
third NP will, in principle, alter all of the ligand conformations,
the total free energy of interaction of three NPs will not be
accurately represented as a sum of the free energies of inter-
action of isolated NP pairs, i.e., the total free energy of inter-
action of an assembly of NPs is then not pair additive. Given
the complexity of conformations associated with the ligands,
it is reasonable to expect further deviations from pair additiv-
ity when the free energies of four, five, . . ., NP configurations
are evaluated.

The shape of the core of an Au nanoparticle depends on
the number of atoms in that core. In general, we can think
of the core as a truncated lattice with a particular shape. For
small cores (D < 5 nm), this truncated lattice is icosahedral,
for moderate size cores (5 nm < D < 10 nm) it is dodecahe-
dral, and for larger cores it takes shapes associated with var-
ious truncated fcc lattices.42,43 However, explicit treatments
of the equilibrium structure of the gold core have shown that
under the temperatures and stresses required for the forma-
tion of these particles, the edges of the crystal will soften and
become somewhat rounded.44 Consequently, we expect the
5 nm diameter cores in our model to form either an icosa-
hedron or a dodecahedron with smoothed edges. Even within
monodisperse samples, populations of both icosahedron and
dodecahedron shapes are found to coexist.43 Because of this
coexistence, the smoothing of the particle edges, and the rela-
tively small size of the lattice facets, all of our calculations use
the approximation that the gold cores are spherical. Specif-
ically, in our model the Au cores are taken to be uniform
spheres constructed from identical particles that interact with
a Lennard-Jones potential. An effective potential of this form
has been calculated by Everaers and Ejtehadi,45 which we
use for the core-pseudo-atom interactions in our system; the
parameters and functional form are tabulated in Tables I and
II of the Appendix.

Our simplified model of the ligand molecule represents
it as a thirteen-particle chain with three types of pseudo-
atoms for the CH2, CH3, and S moieties. All pseudo-atoms
except those that are nearest neighbors along a chain inter-
act through direct Lennard-Jones style potentials, while near-
est neighbors interact with a harmonic bonding potential.
The cis-trans structure of the chain and the barrier to inter-
nal rotation are characterized by describing the bending of
triplets on the chain with a harmonic angular potential and the
twisting motion of quadruplets along the chain with a torsion
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potential. The parameters and functional forms of each of
these potentials are provided in Tables I and II. The spe-
cific forms we have chosen for the potentials are borrowed
from Paul et al.,46 who found that they describe well the
experimental equation of state behavior and the local mobil-
ity of chains in a melt. Our model of the ligand molecule
also retains the qualitative character of the conformations
obtained from molecular mechanics (MM3) calculations more
closely than do the conformations supported by the Optimal
Potential for Liquid Simulations-United Atom (OPLS-UA) and
Optimal Potential for Liquid Simulations-All Atom (OPLS-AA)
force fields.27

There is some evidence that when dressed nanoparticles
such as we consider are in solution the ligands are mobile
along the gold surface, whereas they are immobile in a vac-
uum.47 Since we are interested in the mechanical properties of
a dry NP monolayer, we focus attention on the NP-NP inter-
action in a vacuum, for which case we have fixed the ligand
binding sites, equidistant from one another, on the Au core.
This constraint imposes an inhomogeneity on the ligand dis-
tribution and a loss of rotational symmetry of the NP. If we
suppress the rotational motion of the NP, we generate a range
of possible interactions between pairs of NPs. For example,
if the orientation between the two NPs is such that a ligand
is bound very near the center-to-center axis we expect that
at small core-core separations the ligand will tilt away from
the axis. Conversely, if there are bare portions of the cores
along the center-to-center axis, at small separation the total
interaction is dominated by the core-core interaction. Simply
put, the repulsive interaction at small particle-particle separa-
tion will be strongly dependent on the relative orientation of
the distributions of ligands that cap those particles. We then
expect that interaction between NPs with only a few ligands
will have much more variation with orientation than will that
between particles that are heavily coated with ligands. We
have studied this variation by carrying out simulations with
different orientations of the attached ligands and simulations
with different coverages of ligands. For dodecane thiol ligands
on a flat substrate, the expected maximum coverage provides
each ligand with an area per molecule A = 21.3 Å2, correspond-
ing to a surface number density ρ = 4.7 nm−2, which we define
to be C = 1.48–50 In our calculations, the coverage of the NP
varied from the low value C = 0.11 (ρ = 0.5 nm−2, A = 200 Å2),
corresponding to a nearly bare Au core, up to C = 0.96
(ρ = 4.5 nm−2, A= 22.2 Å2), corresponding to the highest
coverage experimentally available.

To calculate the free energy of a pair of NPs as a func-
tion of separation we proceed as follows: for any selected fixed
NP-NP separation we first carry out simulations with fixed
NP-NP orientation. In these simulations, the core and sulfur
pseudo-atoms interact with every other particle in the system
but remain stationary, while the attached ligands come to con-
formational equilibrium around them. This constraint allows
us to keep the same dynamics and topology as if the cores
were free to rotate, but with the added freedom to explic-
itly compare differently oriented dressed NP-NP interactions.
To calculate the NP-NP separation dependence of the free
energy, we exploit the periodic boundaries of the simulation

FIG. 1. Schematic representation of the periodic boundary compression method.
The left side of NP “A” interacts with the right side of NP “C” across the periodic
boundary. The distance between the particle centers is changed by adjusting the
length of the simulation box.

cell, as illustrated by the image in Fig. 1. The direct interac-
tions between ligand pseudo-atoms on opposite sides of the
NP are very weak since their separations are of the order
of the core diameter, which is an order of magnitude larger
than the length scale for the interaction between the pseudo-
atoms. Therefore, rather than explicitly simulating a system
with two NPs in which only a small fraction of the pseudo-
atoms will contribute to the direct interaction, we allow a sin-
gle NP to interact with itself across a single periodic boundary.
In essence, the right side of the NP will see the left side as if
the ligands were attached to a different core. When we want to
vary the core-core separation between the NPs, then we only
need to vary the size of the simulation cell. Since the core and
sulfur atoms are kept with the fixed position in this picture,
varying the NP-NP distance in this manner samples separation
without explicitly moving the particles or giving them any arti-
ficial velocity, thereby avoiding complications with changing
temperature due to changes in the velocities of the pseudo-
atoms. A similar method was used to probe the interaction
between PbSe nanoparticles in Ref. 27.

Viewed as a strictly geometric construct, the method of
calculation just described will yield a combination of two-
and three-body contributions to the free energy. The valid-
ity of the method for the calculation of the pair potential of
mean force absent three-body contributions depends cru-
cially on the weakness of the direct interactions between
ligand pseudo-atoms on opposite sides of the NP and the
consequent limitation of the domains of distortion of the lig-
and conformations induced by interactions to the facing hemi-
spheres of a particle and its image. When that condition is
fulfilled, the method of calculation is free of three body contri-
butions to the pair potential of mean force arising from image
interactions along the line of centers of the pair. Comple-
menting the estimate of the distant ligand-ligand interactions
obtained from the potential fields we use in these calculations,
we note that Schapotschnikow and Vlugt23 report that the
directly calculated three-body contribution to the free energy
of three NPs is small everywhere that there is not direct over-
lap of the ligand distributions of the NPs, e.g., in a linear
arrangement, and that Bauer et al.40 find the same result. The
validity of the assumption that the domains of distortion of the
ligand conformations induced by interactions are restricted
to the facing hemispheres of a particle, and its image can be
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tested a posteriori by examination of the shape of the ligand
distribution as a function of center-to-center particle sep-
aration. Indeed, the results displayed in Sec. III verify that
assumption.

All of our simulations are performed using the Large Scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)
package with an NVE ensemble and a Langevin thermostat.51
To start a simulation run, we choose a random orientation for
the NP and fix the simulation cell size (periodicity) so that the
core-replica core separation is 100Å and the NP will not inter-
act with its image. The NP is thermalized at 5000 K for 0.1 ns
to erase the memory of the ligand’s initial straight-chain con-
formation. The temperature is then gradually reduced over
another 0.1 ns until it reaches 300 K. The particle is allowed
to equilibrate at this temperature for 5 ns. After equilibra-
tion, the simulation cell size is slowly reduced at a rate of
1 Å/ns. Once the particle has moved 1 Å, we fix the simula-
tion cell size and let the particle equilibrate again for another
1 ns. After this equilibration, we let the particle evolve for
an additional 1 ns, during which time we collect data (ener-
gies and pseudo-atom trajectories). After the data collection
period, the NP-NP separation is changed and this process is
repeated until the particles have reached the minimum sepa-
ration of 51 Å. For the region between 75 Å and 51 Å, we sam-
pled with a higher spatial resolution than from 100 Å to 75 Å,
namely, every 0.33 Å, changing the periodicity at 0.33 Å/ns,
but still equilibrating and collecting data for the same time.
We repeated this procedure while varying the compres-
sion rates and equilibration times and found that allowing
the system to equilibrate for substantially longer periods
(∼10× longer) or changing the periodicity much more slowly
(∼10× slower) did not substantially affect the resulting ener-
gies or pseudo-atom trajectories. Conversely, reducing the
equilibration time by roughly a factor of five, or increasing the
compression rate beyond 10 Å/ns, led to the energy growing
over the course of the simulation, implying that the compres-
sion was driving the system out of equilibrium. By keeping
the equilibration times long and the compression rates small,
we ensure that the transitions between separations occur
quasi-statically.

III. RESULTS FROM THE CALCULATIONS
A. The pseudo-atom model pair
potential of mean force

For each configuration with a fixed NP-NP separation
defined with respect to the image NP, fixed NP orientation,
and fixed NP ligand coverage, the time average over the poten-
tial energies in the space of ligand conformations gives the
constrained free energy of interaction for that NP-NP sep-
aration and NP orientation. Repetition of the procedure for
different NP-NP separations yields the constrained potential
of mean force for the fixed NP orientation; the average of the
latter over NP orientations yields the unconstrained poten-
tial of mean force. This method of calculating the potential of
mean force through constrained molecular dynamics is well
described in the literature.17,24,52–57

FIG. 2. Comparison of the computed pair interaction free energy (black) with
the fit to Eq. (3.1). The ligand coverages are CLow = 0.32, CModerate = 0.64, and
CHigh = 0.96.

A sample of the results of our calculations of the pseudo-
atom model NP-NP potential of mean force is displayed
in Fig. 2. Except for very low ligand coverage, in which

FIG. 3. The pair interaction free energies as a function of ligand coverage. The
curves shown are the fits of the simulation data to Eq. (3.1). The well depths of all
of the potentials have been normalized to −1 and successive potentials are shifted
by 0.5 so that the shapes of the pair interaction free energies with different ligand
coverages can be better compared.
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case the shape of the NP-NP repulsive interaction is poorly
constrained, we find that the pair potential of mean force
separation dependence is well represented by the sum of
an algebraic repulsive term, an exponential attractive term,
and a Gaussian correction term with coverage dependent
parameters

U(r) = ε [(
σR

r
)64 − e−(r−rA)/αA + Ge−(r−rG)2/(2σ2

G)]. (3.1)

Equation (3.1) is found to accurately represent both the depth
and the shape of the potential of mean force with variation of
the ligand coverage (see Figs. 2 and 3). As shown in Fig. 4, the
length scales for the repulsion (σR), the well minimum (r0), and
the attraction (rA) grow linearly with the ligand coverage. The
ligand coverage dependence of the scale length for the expo-
nential attraction (αA) displays a deviation from linearity at
small ligand coverage that we attribute to the statistics of the
small number of NP orientations used in the calculation. The
position of the center of the Gaussian correction term, which
provides a relatively small contribution to the total energy, is
linear in the ligand coverage, but its amplitude and width vary
somewhat with ligand coverage. The scatter in both the ampli-
tude and the width at high coverage is likely an artefact of the
fact that different NP orientations are associated with nearly
identical pair potentials of mean force with small Gaussian
corrections that are not determinable with great accuracy.

A very striking feature of the pair potentials of mean force
displayed in Fig. 2 is their well depth, which grows linearly

with ligand coverage up to ∼500kBT at the highest cover-
age. Similar well depths have been found in studies of other
ligated nanoparticles.23,27 Qualitative support for the reality of
this finding comes from experimental studies of the structure
and mechanical properties of films of dressed Au nanoparti-
cles.58 X-ray scattering and TEM imaging surveys of dressed
Au nanoparticle films have found that the diffraction pattern
and real space structure are largely independent of the surface
pressure in the film, consistent with nanoparticle aggrega-
tion into large rafts even at a low surface pressure, which is
the expected behavior when the NP-NP attractive well depth
is large compared with kBT.59,60 And, these films have been
found to be very strong with Young’s moduli on the order
of several GPa and consistent with the Young’s modulus of
a film of NPs constructed using our pair potential of mean
force.47

These calculations reveal some interesting features of the
pair potential of mean force when the ligand coverage is small.
First, we find that for a few NP orientations there is negli-
gible ligand-mediated NP-NP repulsion so that the repulsive
component of the interaction is then completely due to the
core-core interaction. This situation is consistent with the
occurrence of sintering, when nanoparticles bind together
with their cores in contact. We only observe this behavior
in our simulations at a very low surface coverage, well below
the coverage where it has been observed experimentally. We
argue that this discrepancy can be attributed to the immobil-
ity of ligands along the surface of our simulated nanoparticles.

FIG. 4. The dependence of the param-
eters in Eq. (3.1) on ligand coverage.
The minimum of the potential is at r0 and
U(σ0) = 0.
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Since a single ligand occupying the region surrounding the line
of closest approach of the cores will produce a strong repul-
sion between the cores that arises from its bending whilst the
core-core separation decreases, it will be energetically prefer-
able for that ligand to migrate along the core surface away
from the approaching core if it can. This migration will affect
the distribution of core-core, core-ligand, and ligand-ligand
orientations and for a specific moderate coverage will allow
for more core-core interaction than does a fixed distribution
of ligand coverage.

Second, at low coverage we observe that there is a
large variation between the pair potentials of mean force for
nanoparticles with different orientations. As described above,
this variation is to be expected given the large inhomogeneity
of the ligand topography in the low coverage limit. We observe
that the potentials of mean force for different NP orientations
become more uniform as the ligand coverage increases, and
for C larger than ∼0.43 the variations between the different
orientations sensibly vanish. In experiments, the ligand cover-
age is restricted by the surface chemistry between the ligands
and the gold48,61 since the surface coverage must remain in
equilibrium with the concentration of ligands in the solvent
surrounding the NPs. When the surface coverage is small, lig-
ands will tend to attach to open regions on the surface, but the
coverage can only remain small if the solvent is sensibly free
of ligands. In the experimental preparation process, the NPs
are washed several times by repeatedly replacing the solvent
with one that is devoid of ligands. Although the ligand cover-
age can be modulated, in practice it can only be reduced to
about C = 0.7.46 Combining this information with the results
of our calculations, we infer that in the experimentally rel-
evant situations we can treat the dressed NPs as spherically
symmetric particles.

Third, the Au surface-to-Au surface separation between
dodecane thiol-ligated gold NPs in a monolayer has been mea-
sured in TEM and x-ray scattering experiments.60 The TEM
data yield Au surface-to-Au surface separations in the range
1.4 nm–1.7 nm, which is roughly the length of a single ligand
molecule. The location of the minimum of the pair potential of
mean force that we have calculated grows linearly with ligand
coverage, from sensibly zero for nearly bare particles to 0.7 nm
for fully coated particles; at comparable coverage in the simu-
lation and experiment we find the NP-NP pair minimum to be
about one third of the ligand molecule length. One source for
the discrepancy between these values is the polydispersity of
the gold core diameters (≈15%) used in the experimental stud-
ies, which likely weights the larger separations in the image
analysis. Since the diameter of the gold core is much larger
than the ligand molecule length, the fluctuations in the mea-
sured particle-particle spacing due to that polydispersity will
have a comparable scale to the spacing between monodis-
perse particles. We believe that a more important source for
the discrepancy is deviation from pair additivity of the free
energy of the NP film. As will be shown in Sec. IV, the multi-
body contributions to the NP assembly free energy are sig-
nificantly large; for a ligand coverage C = 0.96, the minimum
of the effective pair potential of mean force including three-
and four-particle contributions is about 10% larger than for

the isolated pair potential of mean force, which brings the
separations determined from experiment and simulation into
qualitative agreement.

Fourth, the experimental finding that the measured NP-
NP spacing is comparable to a chain length has led to some
speculation that ligands on opposite particles may “inter-
digitate.” We do not observe this feature in our simulation
results. We find, instead, that ligands on opposite particles
splay out along the mid-plane between the cores rather than
mix.

How robust are these observations with respect to the
substitution of a pseudo-atom representation for an all-atom
representation of the ligand bound to the AuNP and of the
consequent ligand capped NP-NP interactions? In the best of
all possible worlds, the parameterizations of the two repre-
sentations would generate predictions of the isolated capped
NP and of the capped NP-NP interactions that agree both
qualitatively and quantitatively. Given the uncertainties asso-
ciated with the choice of functional forms used in the differ-
ent representations and the uncertainties associated with the
evaluation of the parameters in these functional forms, it is
reasonable to expect a pseudo-atom representation to cor-
rectly predict all the qualitative features of the ligand capped
NP-NP interaction with good but not perfect accuracy. As part
of an investigation of the influence of water vapor on the inter-
action between ligand capped NPs, to be reported elsewhere,
we have carried out MD simulations of the pair potential of
mean force between AuNPs in a vacuum using an all-atom
model of dodecane thiol ligated 5 nm diameter gold nanopar-
ticles. As for the simulations with pseudo-atom representa-
tion of the interactions, the head groups of the thiols were
fixed in place and the Au cores were treated as spheres. The
intramolecular and intermolecular interactions of the ligand
chains were described using the OPLS-AA force field modi-
fied to account for long alkane chains, using the parameter set
developed by Siu, Pluhackova, and Bockmann.62 The simula-
tion cell contained two ligated NPs, so the interaction between
them was calculated directly rather than with the indirect
scheme described in Sec. II. A comparison of the pseudo-atom
and all-atom pair potentials of mean force for AuNPs with
surface coverage, 3.6 ligands/nm2, is displayed in Fig. 5. Over-
all, the qualitative agreement between the two potentials is
very good, noting that the shapes are very similar. The two
potentials differ quantitatively: the depth of the all-atom pair
potential of mean force is somewhat greater, and the position
of the minimum somewhat larger, than for the pseudo-atom
pair potential of mean force. The values of the most relevant
parameters in the fits of Eq. (3.1) to the simulation data are
εUA = 275kBT, εAA = 370kBT, σR,UA = 53.7 Å, σR,AA = 58.6 Å, r0,UA

= 56.2 Å, and r0,AA = 61.8 Å. Considering the all-atom calcu-
lations, the separation at which NP-NP repulsion rises rapidly
and the shift in the position of the minimum of the potential
are consistent with increased stiffness and somewhat greater
extension of the all-atom representation of the ligand relative
to the pseudo-atom representation of the ligand. We take the
overall consistency between these calculated pair potentials
of mean force as verification of the utility of the pseudo-atom
representation for characterization of ligated NP properties.
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FIG. 5. Comparison of the pair potentials of mean force calculated with the united
atom and all-atom representations of the ligand. The continuous curve is, in each
case, the fit of Eq. (3.1) to the simulation data.

B. Pseudo-atom model ligand conformations
and packing structure

Our calculations record the positions and trajectories
of the pseudo-atoms of the NPs throughout the interac-
tion. These trajectories provide information about the internal
structure of the dressing ligands, specifically, the number den-
sity of pseudo-atoms throughout the ligand envelope. Since
the NP pair interaction is approximately azimuthally symmet-
ric, we define an axis linking the core-centers of the two par-
ticles. We then characterize the position of a pseudo-atom
within the ligand envelope surrounding the core by its dis-
tance from the center of the core to which it is bound and
the angle formed between the core-core axis and the line
connecting that position to the core.

When the NP-NP pair is well separated, the individ-
ual NPs are spherically symmetric except for the small-scale
angular inhomogeneity mentioned above. The NP properties

FIG. 6. Number density of pseudo-atoms as a function of distance from the NP
core as a function of ligand coverage.

in this limit inform us about the equilibrium structure of the
ligand envelope of an individual NP. We find that the lig-
and density along a radius emanating from the core, ρ(r),
has the same gross features for all values of C, as shown in
Fig. 6.

The pseudo-atom density close to the core oscillates
around a constant value up to a distance along the chain cor-
responding to the position of the fourth pseudo-atom and
then smoothly decays to zero. This radial structure is a conse-
quence of the fixed positions of the ligand attachments to the
NP surface. Consequently, the motions of the first few pseudo-
atoms of the ligand chain are restricted. The first triplet of
pseudo-atoms is confined to very nearly forming a rigid tri-
angle, and the first quadruplet has a single cis and two gauche
conformations available; these nearly fixed conformations lead
to the peaks in ρ(r). At greater distance from the NP surface,
there are substantially more conformations available to a lig-
and chain, including freedom to tilt away from the normal to

FIG. 7. Contour maps of the spatial distribution of pseudo-atoms around the NP
core. The distributions are displayed in cylindrical coordinates after averaging over
the azimuthal angle. The axis of the cylindrical coordinates coincides with the
center-to center line between NPs. The left column shows the ligand distribution
when the core-core separation is 10 nm; the right column shows the ligand dis-
tribution at the equilibrium core-core separation. The three frames are for ligand
coverages (top-to-bottom) C = 0.32, C = 0.64, and C = 0.96. The contour levels for
C = 0.32 are multiples of 7.5/nm3 (7.5, 15, 22.5, 30, 37.5, 45, 52.5, and 60) pro-
gressively smaller from the NP surface outwards. The contour levels for C = 0.64
are at multiples of 15/nm3 (with a maximum of 120/nm3), progressively smaller
from the NP surface outwards. The contour levels for C = 0.96 are multiples of
22.5/nm3 (with a maximum of 180/nm3) progressively smaller from the NP surface
outwards.
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the surface, noting that said tilt is restricted by the presence
of neighboring ligands.

Near the NP core the density of pseudo-atoms in the lig-
and chains is proportional to the coverage on the surface,
even down to very low coverage, indicating that the den-
sity in that region is strictly due to the changing number of
chains attached. This observation implies that the ends of the
chains are not bending back into the interior region, as that
would increase the observed density at low coverage. Since
the density-coverage proportionality holds down to low cov-
erage, it cannot be attributed to exclusion effects from neigh-
boring ligands alone. Instead, it can be understood as another
consequence of the limited flexibility of the ligand chains. The
torsion potential keeps the chain rigid on the scale of a third
of the chain length. Although at the unbound end of the chain,
there are many configurations very few include chain rever-
sal. For ligand coverage greater than C = 0.8, the pseudo-
atom density distribution has small peaks out to about the
seventh position in the ligand chain, after which it decays con-
tinuously to zero, whereas for ligand coverage less than 0.8,
the pseudo-atom density distribution decays continuously to
zero for separations beyond the fourth position in the ligand
chain.

We now consider the ligand pseudo-atom density distri-
bution as a function of the NP-NP separation. Contour plots
of three ligand density distributions in the isolated particle
and in a NP-NP pair at the respective equilibrium separa-
tions are shown in Fig. 7. Figure 8 displays the radial dis-
tributions of ligand density at several angles with respect

FIG. 8. Cross sections of the spatial distributions of pseudo-atoms around the Au
core along lines with fixed angular separation from the line between core centers,
all for the equilibrium core-core separation for the angles labelled in the inset. The
single particle ligand distributions shown in Fig. 5 are here represented as the
black lines. From top-to-bottom, C = 0.32, C = 0.64, and C = 0.96.

to the center-to-center axis. At low coverage, the NP-NP
interaction generates a small region close to the center-
to-center axis where the ligand density has been highly
enhanced, but there is virtually no enhancement of the lig-
and density at angles beyond 15◦ from the axis. Conversely,
at high coverage the pair interaction generates only a small
enhancement of the ligand density along the center-to-center
axis, but that enhancement extends to angles far away from
the axis. As the coverage varies from low to high, there is a
smooth shift between these behaviors. The fractional change
in the density in the interacting region decreases gradu-
ally with increasing coverage, while the angular range over
which that density is affected grows until the entire particle is
involved.

IV. NON-ADDITIVITY OF THE PAIR
POTENTIAL OF MEAN FORCE

Our simulation data reproduce the qualitative features of
the pair potential of mean force inferred from earlier simu-
lations,10–37 and they extend the coverage of the parameters
that influence the pair potential of mean force; the quantita-
tive differences between the results of the several simulations
arise from differences in the model NPs (e.g., core diameter
and ligand coverage), and they use different parametric repre-
sentations of the ligand conformations and the ligand-ligand
interactions. The calculations reported in this paper clearly
show that the pair potential of mean force is sensitive to the
coverage of the NP by the ligands and the character of the lig-
and conformations, and that the distribution of ligand confor-
mations depends on the NP-NP separation. The distribution of
ligand conformations in an NP-NP pair retains statistical cylin-
drical symmetry, but not spherical isotropy, and the loss of
the latter has been suggested to be the driver for anisotropic
NP structures, such as strings of NPs.63,64 Of more relevance
to us, the distribution of ligand conformations on each of the
NPs of a pair separated by some fixed distance is expected
to be further changed when other NPs are nearby, in which
observation implies that the free energy of assembly of NPs
will have a non-trivial multi-particle contribution augment-
ing the sum of pair potentials of mean force. Moreover, we
expect that the magnitude of the deviation from pair additiv-
ity of the potential of mean force will depend on the ligand
coverage.

For simple particles that interact with a central potential
there exists a rarely exploited systematic formalism for cal-
culation of the corrections to additivity of the pair potential
of mean force. That formalism defines successive corrections
to the representation of the triplet correlation function by
the product of pair distribution functions65,66 via an expan-
sion in powers of the system density. However, the calcula-
tion of the coefficients in the power series is too complex
to be practical for the case of the typical NP-NP interac-
tion.67 The calculations of the three NP correction to pair
additivity of the potential of mean force that have been
reported utilize a direct calculation of the work required to
assemble particular configurations of three NPs in a vac-
uum. These calculations, reported by Schapotschnikow and
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Vlugt,23 and by Bauer et al.,40 provide the following relevant
information:

(1) For the dodecane thiol ligated model NPs studied by
Bauer et al., when 3 NPs are in an equilateral config-
uration with separations r12 = r13 = r23 equal to the
two-particle equilibrium separation, the three-particle
correction interaction is repulsive and amounts to about
30% of the total interaction. When the triangular config-
uration of particles subtends an angle greater than 60◦,
say, with r12 and r23 fixed, or when r12 is increased with
r23 and the angle between r12 and r23 fixed, the three-
body correction interaction decreases. In general, for all
the configurations considered, the correction to addi-
tivity of the pair potential of mean force is found to be
sensibly monotonically repulsive as a function of all pair
separations.

(2) The range of the three-particle correction interaction is
a fraction of a core diameter. For example, the calcula-
tions reported by Bauer et al. show that for an isosce-
les triangle arrangement of dodecane thiol ligated cores
with diameter 3.7 nm, with r12 fixed at the equilibrium
NP-NP separation determined by the pair potential of
mean force (�1.33 core diameters), the three-particle
correction interaction is reduced to sensibly zero when
r13 = r23 are increased to 1.7 core diameters. At fixed NP-
NP separation, the three-particle correction interaction
is decreased when the core diameter is increased. We
will make use of these observations in our treatment of
the interaction free energy of a square-lattice system
(see below).

(3) As expected, the angular distribution of the deformation
of the conformations of the ligands dressing a NP that
approaches a pair of NPs with fixed separation depends
on the deviation of the line of approach from perpen-
dicular to the line of centers of the NP pair; the loss of
symmetry of these deformations and overlap of their
angular spreads contribute to the multiparticle correc-
tion interactions.

(4) The angular dependence of the three-particle cor-
rection interaction is strong. Using results from the
simulations reported by Bauer et al., for the equilat-
eral triangle configuration with all NP-NP separations
equal to that determined by the isolated pair poten-
tial of mean force the three-particle correction inter-
action is approximately 250 kJ/mol, whereas with the
same particle separations in the right triangle configu-
ration the three-particle correction interaction is only
75 kJ/mol.

(5) Schapotschnikow and Vlugt have reported the results
of simulations of three-particle interactions between
butane thiol and octane thiol capped NPs with Au core
diameter 1.8 nm. If 1, 2, and 3 identify the three NPs,
they calculate an effective pair potential of mean force
that is defined by integration of the projection of the
sum of the forces between particles 1 and 3, and 2
and 3, onto the bisector of the separation between
particles 1 and 2. With the potential parameters they

used for the octane thiol capped NPs, the three-body
correction to additivity of the pair potential of mean
force is found to be monotonically repulsive. These
calculations predict that the three-particle correction
to pair additivity vanishes when the NP-NP separation
exceeds the distance at which the capping ligand chains
overlap.

(6) For all configurations of the three particles with sepa-
rations that permit ligand chain overlap it is found that
the equilibrium NP-NP separation is increased from that
determined by the isolated pair potential of mean force,
and that the well depth is reduced from that determined
by the isolated pair potential of mean force.

Because of the complexity and great number of degrees
of freedom of the capping ligands, we expect that bringing
an extra NP close to a compact cluster of NPs will gener-
ate a perturbation to the capping ligand distribution of each
NP in the cluster and an extra non-trivial correction to the
additivity of the pair potential of mean force beyond the three-
body, four-body, . . ., corrections. All of these multi-particle
corrections have, in general, complicated dependences on the
geometry of the cluster. Since much of the interest in NP sys-
tems is in the properties of close packed ordered assemblies
of particles, we examine a simplified representation of the role
of non-additivity of the pair potential of mean force with a
proxy function. Specifically, we examine the NP-NP separation
dependence of a defined effective pair potential of mean force
that plays the role of a “bond” potential. This proxy function
includes, implicitly, the variation along one specific symme-
try coordinate of all of the non-additive contributions to the
free energy in the cluster; the defined proxy function depends
only on the NP-NP separation. The model cluster we have con-
sidered is extracted from a periodic square lattice of NPs; it
was designed to have enough NPs that more than three-body
corrections to the pair potential of mean force contribute
to the free energy, and a symmetry that permits straight-
forward definition of the effective pair potential of mean
force.

The square lattices we consider were constructed in the
same manner as the linear systems described above, except
with two periodic boundaries instead of just one and with the
x and y length scales kept identical. As before, we explicitly
model just one NP but we allow that NP to interact with its
images across the periodic boundaries. To vary the lattice con-
stant of the arrangement, we slowly increase or decrease the
size of the simulation box preserving the square symmetry,
and we extract the NP-NP separation dependence of an effec-
tive pair potential of mean force from the total interaction
free energies of the expanded/contracted configurations. By
construction, the total interaction free energy includes contri-
butions due to the interactions between the NP and its images,
which will be affected by the ligand distribution perturbations
generated by other images, i.e., the total interaction free ener-
gies will contain contributions from three, four, and higher
particle correction interactions.

Though direct interactions between diagonal neighbors
in the lattice are allowed, we expect them to only present
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a minor contribution to the total interaction free energy as
the calculations reported in this paper show that the pair
potential of mean force of fully capped NPs at a separation
of 1.4 core diameters is only of order 7% of the well depth
at the equilibrium separation (see Fig. 2). Similarly, the cal-
culations of Schapotschnikow and Vlugt show that the three-
particle correction to the additivity of the potential of mean
force is vanishingly small when pair separation exceeds the
separation for incipient ligand chain overlap. We can there-
fore interpret the total interaction free energy as the sum of
effective pair potentials of mean force between nearest neigh-
bors in the lattice, i.e., the “bond” pair potentials of mean
force, and interpret the difference between the defined “bond”
pair potential and the isolated pair potential described above
as the cumulative effect of three-, four-, and higher-particle
corrections.

We have calculated the total interaction free energies of
square configurations of NPs with three different ligand cov-
erages; Fig. 9 displays the defined effective pair potentials
of mean force, and Fig. 10 displays the difference between
the effective potentials and the corresponding isolated pair
potentials of mean force for the several ligand coverages.
These calculations reveal three important features of the devi-
ation from additivity of the pair potential of mean force.
First, as reported by others, the depth of the well in the effec-
tive pair potential of mean force differs from that between
an isolated pair of NPs. This difference in depth is ligand
coverage dependent. Second, for the ligand coverage range
considered the position of the minimum in the effective pair
potential of mean force is shifted to larger separation than
that between an isolated pair of NPs with the same cov-
erage. We find that the well of the effective pair potential
of mean force is deeper at small coverage and shallower at
high coverage than that of the pure pair potential of mean
force.

We now examine how the three- and higher-particle cor-
rection interactions to the pair potential of mean force gener-
ate the observed changes in well depth and NP-NP equilibrium
separation. Our definition of the effective pair potential of
mean force does not reveal the partitioning of the correction
interactions between the three-, four-, and higher-particle

FIG. 10. Difference between the effective pair potential of mean force and the
isolated pair potential of mean force. From top-to-bottom, C = 0.32, C = 0.64, and
C = 0.96.

contributions. The calculations reported by Schapotschnikow
and Vlugt and by Bauer et al., both show that for fully capped
NPs the correction interaction induced by the third-particle
perturbation of a pair of NPs is monotonically repulsive. The
magnitudes of the well depths displayed in Fig. 9, combined
with the magnitudes of the three-particle correction interac-
tion computed by Schapotschnikow and Vlugt, and by Bauer
et al., imply that the four- and higher-particle correction
interaction is comparable in magnitude to the three-particle
correction interaction but of opposite sign, i.e., attractive. We
argue that the importance of the many particle corrections
to additivity of the potential of mean force is visualized in
dramatic changes in the ligand distribution on the surface
of the Au core. We show in Fig. 11 the ligand distribution
on one AuNP in the square assembly when the AuNPs are
far apart (right column, center-to-center separation 8 nm)
and close together (left column, center-to-center separation
5.3 nm). The dramatic transition from a spherical distribution
to a near square distribution with greatly enhanced density
of ligands at the corners is apparent for all three coverages
(1.5 ligands/nm2, 3.0 ligands/nm2, and 4.5 ligands/nm2). We

FIG. 9. Pair free energy function for
an isolated NP pair (red) and inferred
from the free energy of four NPs in
a square (black). From top-to-bottom,
C = 0.32, C = 0.64, and C = 0.96. The
dotted red curve shows the effective pair
free energy function constructed from
pair interactions including the interaction
along the diagonal of the square.
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FIG. 11. Ligand distributions on a AuNP in a square array of NPs: Right col-
umn, center-to-center separation 8 nm, left column, center-to-center separation
5.3 nm, top row 1.5 ligands/nm2, middle row 3.0 ligands/nm2, and bottom row 4.5
ligands/nm2. The ligand distributions of the NPs that neighbor the one displayed
are not displayed.

conclude that it is plausible that contributions to the effec-
tive pair potential of mean force from changes in the lig-
and distributions induced by proximity to more particles, e.g.,
fifth and sixth neighbors in a two-dimensional array, may be
significant.

V. DISCUSSION
In summary, our simulations of the properties of a

pseudo-atom model of a dodecane thiol-ligated gold core
nanoparticle in a vacuum predict that the pseudo-atom den-
sity distribution in the interior region of the ligand envelope is
structured with a scale length of the pseudo-atom-pseudo-
atom separation and that the outer region of the envelope
has a pseudo-atom density profile that smoothly decays to
zero. The NP-NP interaction in a vacuum is strongly depen-
dent on the ligand coverage, and therefore on the density and
distribution of pseudo-atoms in the envelope. In turn, the dis-
tribution of pseudo-atoms in the ligand envelope changes as
the NP-NP separation changes. We have developed a sim-
ple functional form for the pair potential of mean force; this
functional form has length scales characteristic of short-range
repulsion and the well location, and a well depth, all of which

scale linearly with the surface coverage; the well depth which
reaches up to ∼500kBT at the highest coverage. At the min-
imum of the pair potential of mean force between two NPs,
when the ligand coverage is low, there is localized enhance-
ment in the density of pseudo-atoms between the particles;
when the ligand coverage is high, the pseudo-atom density
change is spread around the entire nanoparticle. The curva-
ture at the minimum of the pair potential of mean force is
consistent with the measured Young’s modulus of a mono-
layer of dodecane thiol-ligated gold NPs.46 Because the inter-
nal structures associated with the ligand chains are dependent
on the ligand coverage and on the NP-NP separation, there
are important multi-particle contributions to the effective pair
potential of mean force. Our calculations imply that the three-
and four-particle correction interactions to the additivity of
the pair potential of mean force are of comparable magni-
tude but opposite sign and that correction interaction con-
tributions from yet larger numbers of particles need to be
investigated.

Several phenomenological models have been proposed
to describe the interactions between capped nanoparticles.
In particular, the Optimum Packing Model (OPM)68 and the
Overlapping Cone Model (OCM)23 have been widely used to
suggest equilibrium separations between nanoparticles. These
models set the equilibrium separation as that where the vol-
ume occupied by some ligands in the system matches the
free volume available for these ligands. The OPM compares
the volume occupied by a single fully extended ligand with
the cone formed by the center of the core, the area of the
binding site, and the midplane between the nanoparticles. The
OCM compares the volume of the cone formed by the cen-
ter of the core, the midplane between the nanoparticles, and
the edge of the ligand envelope with the volume of the ligands
which are bound within that cone. Both models are intuitively
easy to grasp and predict equilibrium separations which are
in good agreement with experimental data, but the micro-
scopic picture proposed does not agree with the results of our
simulations. In essence, the OCM and the OPM assume that
within the overlapping region the density of particles grows
until the region is fully packed. This increase in the density
fully accounts for the lost free volume around the nanoparti-
cle, so the density does not increase outside the cone region.
But our simulations contradict this feature of the models; they
show that at moderate to high ligand coverages the enhanced-
density regions extend well beyond the overlapping cone
region.
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TABLE I. Interactions used in the model.

Core-core Ucc(r) = − Acc
12

[
D2

r2 −D2 + D2

r2 + 2 ln
(
r2 −D2
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)]
+ Acc
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c
r

[
2 r2 − 14DR + 27D2

(r−D)7
+ 2 r2 + 14DR + 27D2

(r +D)7
− 4r2 −30D2

r7

]

Core-pseudoatom Ucp =
16D3σ3

cpAcp

9(D2 − 4r2)3

[
1−

64σ6
cp(5D6 + 180D4r2 + 1008D2r4 + 960r6)

15(D− 2r)6(D + 2r)6

]

Unbonded pseudoatom-pseudoatom Upp = 4ε
[
σ12

r12 −
σ6

r6

]

2-pseudoatom bond UB = KB(r − rB)2

3-pseudoatom angle UA = KA(θ − θB)2

4-pseudoatom torsion UT = A0 + A1 cos θ + A2 cos2θ + A3 cos3θ

TABLE II. Parameters for interactions in the model.

Core-core D = 50 Å
σc = 2.934 Å

Au–Au Acc = 45.0 kcal mol−1

Core-pseudoatom D = 50 Å
σcp = 3.47 Å

Au–S Acp = 0
Au–CH2 Acc = 24.6 kcal mol−1

Au–CH3 Acc = 41.6 kcal mol−1

2-pseudoatom σcp = 3.47 Å
S–S ε = 0.0934 kcal mol−1

S–CH2 ε = 0.0934 kcal mol−1

S–CH3 ε = 0.1455 kcal mol−1

CH2–CH2 ε = 0.0934 kcal mol−1

CH2–CH3 ε = 0.1455 kcal mol−1

CH3–CH3 ε = 0.2264 kcal mol−1

2-pseudoatom bond KB = 600 kcal mol−1Å
−2

rB = 1.53 Å
3-pseudoatom angle KA = 60 kcal mol−1deg−2

θA = 109.5◦

4-pseudoatom torsion A0 = 1.553 kcal mol−1

A1 = 4.06 kcal mol−1

A2 = 0.867 kcal mol−1

A3 = −6.48 kcal mol−1

APPENDIX: PSEUDO-ATOM POTENTIAL PARAMETERS

REFERENCES
1A. N. Shipway, E. Katz, and I. Willner, Chem. Phys. Chem. 1, 18 (2000).
2Z. Nie, A. Petukhova, and E. Kumacheva, Nat. Nanotechnol. 5, 15 (2010).
3A. Desireddy, C. P. Joshi, M. Sestak, S. Little, S. Kumar, N. J. Podraza,
S. Marsillac, R. W. Collins, and T. P. Bigioni, Thin Solid Films 519, 6077
(2011).
4P. V. Kamat, J. Phys. Chem. B 106, 7729 (2002).
5X. Sun, Y. Huang, and D. E. Nikles, Int. J. Nanotechnol. 1, 328 (2004).
6W. Seth Coe, W.-K. Woo, M. Bawendi, and V. Bulovic, Nature 420, 800
(2002).
7J. Satija, R. Bharadwaj, V. V. R. Sai, and S. Mukherji, Nanotechnol., Sci. Appl.
2010(3), 171.

8J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne,
Nat. Mater. 7, 442 (2008).
9Y. Won Jong, Y. Cheng, Z. Gang, L. Hua Min, P. Young Jun, and K. Jong Min,
J. Korean Phys. Soc. 56, 1488 (2010).
10W. D. Luedtke and U. Landman, J. Phys. Chem. 100, 13323 (1996).
11A.-C. Yang and C.-I. Weng, J. Phys. Chem. C 114, 8697 (2010).
12A.-C. Yang, C.-I. Weng, and T.-C. Chen, J. Chem. Phys. 135, 034101 (2011).
13J. M. D. Lane and G. S. Grest, Phys. Rev. Lett. 104, 235501 (2010).
14B. L. Peters, J. M. D. Lane, A. E. Ismail, and G. S. Grest, Langmuir 28, 17443
(2012).
15J. M. D. Lane and G. S. Grest, Nanoscale 6, 5132 (2014).
16D. S. Bolintineanu, J. M. D. Lane, and G. S. Grest, Langmuir 30, 11075
(2014).
17P. K. Ghorai and S. C. Glotzer, J. Phys. Chem. C 111, 15857 (2007).
18W. D. Luedtke and U. Landman, J. Phys. Chem. B 102, 6566 (1998).
19K. A. Tay and F. Bresme, J. Am. Chem. Soc. 128, 14166 (2006).
20M. Lal, M. Plummer, N. J. Richmond, and W. Smith, J. Phys. Chem. B 108,
6052 (2004).
21R. Pool, P. Schapotschnikow, and T. J. H. Vlugt, J. Phys. Chem. C 111, 10201
(2007).
22N. Patel and S. A. Egorov, J. Chem. Phys. 126, 054706 (2007).
23P. Schapotschnikow and T. J. H. Vlugt, J. Chem. Phys. 131, 124705 (2009).
24P. Schapotschnikow, R. Pool, and T. J. H. Vlugt, Nano Lett. 8, 2930 (2008).
25A. P. Kaushik and P. Clancy, J. Comput. Chem. 34, 523 (2013).
26A. Widmer-Cooper and P. Geissler, Nano Lett. 14, 57 (2014).
27A. P. Kaushik and P. Clancy, J. Chem. Phys. 136, 114702 (2012).
28K. M. Salerno, D. S. Bolintineanu, J. M. D. Lane, and G. S. Grest, Phys. Rev. E
91, 062403 (2015).
29G. Munao, A. Correa, A. Pizzirusso, and G. Milano, Eur. Phys. J. E 41, 38
(2018).
30F. LoVerso, L. Yelash, S. A. Egorov, and K. Binder, Soft Matter 8, 4185 (2012).
31F. LoVerso, S. A. Egorov, and K. Binder, Macromolecules 45, 8892
(2012).
32S. Hajiw, J. Schmitt, M. Imperor-Clerc, and B. Pansu, Soft Matter 11, 3920
(2015).
33L. Baran and S. Sokolowski, Appl. Surf. Sci. 396, 1343 (2017).
34H. O. S. Yadav and C. Chakravarty, J. Chem. Phys. 146, 174902 (2017).
35T.-Y. Tang and G. Arya, Macromolecules 50, 1167 (2017).
36L. Baran and S. Sokolowski, J. Chem. Phys. 147, 044903 (2017).
37X. Liu, P. Lu, and H. Zhai, J. Appl. Phys. 123, 045101 (2018).
38B. J. Henz, P. W. Chung, J. W. Andzelm, T. L. Chantawansri, J. L. Lenhart,
and F. L. Beyer, Langmuir 27, 7836 (2011).

J. Chem. Phys. 150, 044904 (2019); doi: 10.1063/1.5064545 150, 044904-13

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1002/1439-7641(20000804)1:1<18::aid-cphc18>3.3.co;2-c
https://doi.org/10.1038/nnano.2009.453
https://doi.org/10.1016/j.tsf.2011.03.111
https://doi.org/10.1021/jp0209289
https://doi.org/10.1504/ijnt.2004.004914
https://doi.org/10.1038/nature01217
https://doi.org/10.2147/NSA.S8981
https://doi.org/10.1038/nmat2162
https://doi.org/10.3938/jkps.56.1488
https://doi.org/10.1021/jp961721g
https://doi.org/10.1021/jp910101t
https://doi.org/10.1063/1.3602721
https://doi.org/10.1103/physrevlett.104.235501
https://doi.org/10.1021/la3023166
https://doi.org/10.1039/c3nr04658c
https://doi.org/10.1021/la502795z
https://doi.org/10.1021/jp0746289
https://doi.org/10.1021/jp981745i
https://doi.org/10.1021/ja061901w
https://doi.org/10.1021/jp036776e
https://doi.org/10.1021/jp071491d
https://doi.org/10.1063/1.2434155
https://doi.org/10.1063/1.3227043
https://doi.org/10.1021/nl8017862
https://doi.org/10.1002/jcc.23152
https://doi.org/10.1021/nl403067p
https://doi.org/10.1063/1.3689973
https://doi.org/10.1103/physreve.91.062403
https://doi.org/10.1140/epje/i2018-11646-3
https://doi.org/10.1039/c2sm06836b
https://doi.org/10.1021/ma301651z
https://doi.org/10.1039/c5sm00176e
https://doi.org/10.1016/j.apsusc.2016.11.159
https://doi.org/10.1063/1.4982755
https://doi.org/10.1021/acs.macromol.6b01936
https://doi.org/10.1063/1.4994919
https://doi.org/10.1063/1.5005094
https://doi.org/10.1021/la2005024


The Journal of
Chemical Physics ARTICLE scitation.org/journal/jcp

39J. M. D. Lane, A. E. Ismail, M. Chandross, C. D. Lorenz, and G. S. Grest,
Phys. Rev. E 79, 050501 (2009).
40G. Bauer, N. Gribova, A. Lange, C. Holm, and J. Gross, Mol. Phys. 115, 1031
(2017).
41Y. Wang, H. Chan, B. Narayanan, S. P. McBride, S. K. R. S.
Sankaranarayanan, X.-M. Lin, and H. M. Jaeger, ACS Nano 11, 8026 (2017).
42A. S. Barnard, N. P. Young, A. I. Kirkland, M. A. Van Huis, and H. Xu, ACS
Nano 3, 1431 (2009).
43K. Koga and K. Sugawara, Surf. Sci. 529, 23 (2003).
44Y. Wang, S. Teitel, and C. Dellago, Chem. Phys. Lett. 394, 257 (2004).
45R. Everaers and M. R. Ejtehadi, Phys. Rev. E 67, 041710 (2003).
46W. Paul, D. Y. Yoon, and G. D. Smith, J. Chem. Phys. 103, 1702 (1995).
47Z. Jiang, J. He, S. A. Deshmukh, P. Kanjanaboos, G. Kamath, Y. Wang, S.
K. Sankaranarayanan, J. Wang, H. M. Jaeger, and X. M. Lin, Nat. Mater. 14,
912 (2015).
48L. Strong and G. M. Whitesides, Langmuir 4, 546 (1988).
49M. J. Hostetler, J. E. Wingate, C.-J. Zhong, J. E. Harris, R. W. Vachet, M.
R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M.
D. Porter, N. D. Evans, and R. W. Murray, Langmuir 14, 17 (1998).
50G. H. Woehrle, L. O. Brown, and J. E. Hutchison, J. Am. Chem. Soc. 127, 2172
(2005).
51S. Plimpton, J. Comput. Phys. 117, 1 (1995).
52J.-M. Depaepe, J.-P. Ryckaert, E. Paci, and G. Ciccotti, Mol. Phys. 79, 515
(1993).
53P. Schapotschnikow and T. J. H. Vlugt, J. Phys. Chem. C 114, 2531 (2010).

54W. K. Den Otter and W. J. Briels, J. Chem. Phys. 109, 4139 (1998).
55M. Sprik and G. Ciccotti, J. Chem. Phys. 109, 7737 (1998).
56G. Ciccotti, R. Kapral, and E. Vanden-Eijnden, ChemPhysChem 6, 1809
(2005).
57D. Trzesniak, A.-P. E. Kunz, and W. F. van Gunsteren, Chem. Phys. Chem.
8, 162 (2007).
58J. He, P. Kanjanaboos, N. L. Frazer, A. Weis, X. M. Lin, and H. M. Jaeger,
Small 6, 1449 (2010).
59D. G. Schultz, X.-M. Lin, D. Li, J. Gebhardt, M. Meron, P. J. Viccaro, and
B. Lin, J. Phys. Chem. B 110, 24522 (2006).
60S. D. Griesemer, S. S. You, P. Kanjanaboos, M. Calabro, H. M. Jaeger, S.
A. Rice, and B. Lin, Soft Matter 13, 3125 (2017).
61D. S. Karpovich and G. J. Blanchard, Langmuir 10, 3315 (1994).
62S. W. Siu, K. Pluhackova, and R. A. Bockmann, J. Chem. Theory Comput. 8,
1459–1470 (2012).
63P. Ackora, H. Liu, S. K. Kumar, J. Moll, Y. Li, B. C. Benicewicz, L.
S. Schadler, D. Acehan, A. Z. Panagiotopoulos, V. Prymatisyn, V. Ganesan,
J. Ilavsky, P. Thiyagarajan, R. H. Colby, and J. F. Douglas, Nat. Mater. 8, 354
(2009).
64D. Bedrov, G. D. Smith, and L. Li, Langmuir 21, 5251 (2005).
65E. Meeron, J. Chem. Phys. 27, 1238 (1957).
66E. E. Salpeter, Ann. Phys. 5, 183 (1958).
67A. D. J. Haymet, S. A. Rice, and W. G. Madden, J. Chem. Phys. 74, 3033
(1981).
68U. Landman and W. D. Luedtke, Faraday Discuss. 125, 1 (2004).

J. Chem. Phys. 150, 044904 (2019); doi: 10.1063/1.5064545 150, 044904-14

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1103/physreve.79.050501
https://doi.org/10.1080/00268976.2016.1213909
https://doi.org/10.1021/acsnano.7b02676
https://doi.org/10.1021/nn900220k
https://doi.org/10.1021/nn900220k
https://doi.org/10.1016/s0039-6028(03)00300-5
https://doi.org/10.1016/j.cplett.2004.06.139
https://doi.org/10.1103/physreve.67.041710
https://doi.org/10.1063/1.469740
https://doi.org/10.1038/nmat4321
https://doi.org/10.1021/la00081a009
https://doi.org/10.1021/la970588w
https://doi.org/10.1021/ja0457718
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1080/00268979300101411
https://doi.org/10.1021/jp910554e
https://doi.org/10.1063/1.477019
https://doi.org/10.1063/1.477419
https://doi.org/10.1002/cphc.200400669
https://doi.org/10.1002/cphc.200600527
https://doi.org/10.1002/smll.201000114
https://doi.org/10.1021/jp063820s
https://doi.org/10.1039/c7sm00319f
https://doi.org/10.1021/la00021a066
https://doi.org/10.1021/ct200908r
https://doi.org/10.1038/nmat2404
https://doi.org/10.1021/la0504816
https://doi.org/10.1063/1.1743985
https://doi.org/10.1016/0003-4916(58)90058-7
https://doi.org/10.1063/1.441427
https://doi.org/10.1039/b312640b

