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We report the structure of transient fluctuations in the liquid phase of a two-dimensional system that
exhibits several ordered phases with different symmetries. The density-temperature phase diagram
of the system studied, composed of particles with a repulsive shouldered soft-core pair interaction,
has regions with stable liquid and hexatic phases, a square solid phase, two separate hexagonal solid
phases, and a quasi-crystalline phase with 12-fold symmetry. We have examined the character of the
structured fluctuations by computing the same-time aperture cross correlation function of particle
configurations in several fluid regions near to and far from phase transition lines. The two primary
goals of our study are (1) determination if the spectrum of structures of the fluctuations in the liquid
is broader than or limited to the motifs exhibited by the ordered phases supported by the system
and (2) determination of the density domains in the liquid that support particular transient structured
fluctuations. In the system studied, along a low-temperature isotherm in the temperature-density plane
that intersects all the ordered phases we find that the liquid phase exhibits structured fluctuations with
hexagonal symmetry near both liquid-hexatic transition lines. Along the same isotherm and in the
stable liquid between the lower density hexatic-to-liquid and the higher density liquid-to-square solid
transitions, we find that transient hexagonal ordered fluctuations dominate the liquid region near the
hexatic-to-liquid transition and square ordered fluctuations dominate the liquid region near the liquid-
to square solid transition, but both of these structured fluctuations occur at all densities between these
transition lines. At a higher temperature, at phase points in the liquid above, but close to the density
maximum of an underlying transition, there are ordered fluctuations that can be correlated with the
structure of the lower temperature phase. Although it is expected that very close to a liquid-ordered
phase boundary a structured fluctuation in the liquid will have the same symmetry as the ordered
phase, it is not obvious that structured fluctuations in thermodynamic states deep in the liquid phase
will be similarly restricted. The most striking result of our calculations is that no evidence is found
in the liquid phase for structured fluctuations with other symmetries than those of the ordered phases
of the system. Published by AIP Publishing. https://doi.org/10.1063/1.5026680

I. INTRODUCTION

Until very recently it was believed that in a two-
dimensional (2D) system composed of particles that interact
via a short-ranged central pair potential, the most stable pack-
ing of the particles is in a hexagonal lattice, based on the
assertion that the lowest energy configuration of particles that
interact via central forces has the maximum number of nearest
neighbours. However, recent research has revealed that there
exist simple monotone repulsive central pair potentials that
support, in a 2D system, stable ground state (zero tempera-
ture) lattices with hexagonal packing, square packing, Kagome
packing, and many other packing motifs1–7 and that these lat-
tices have vibrational spectra with only positive frequencies
and hence they are stable over non-trivial density and tem-
perature ranges. For a system with monotone repulsive pair

a)Author to whom correspondence should be addressed: sarice@uchicago.edu

potential the free energy per particle, hence the stability of a
particular lattice relative to other lattices, is determined by del-
icate differences between the values of both the pair potential
and the pair force at the locations of the first few coordina-
tion shells of the several lattice structures.4 In a dense liquid,
the distribution of the number of neighbours in the domain
up to the first minimum in the ensemble averaged pair cor-
relation function has a standard deviation that implies the
existence of many instantaneous configurations with first shell
coordination numbers considerably different from the ensem-
ble averaged value.8,9 Then, in view of the delicate balance
that results in the selection of a particular packing motif for
the ordered phase out of a set of different packing motifs, it
is plausible to expect that in the liquid phase there will be
structured fluctuations representing both the most stable pack-
ing motif and other less stable motifs, albeit with different
probabilities.

This paper examines the structures, specifically the local
particle orderings, of transient fluctuations in the liquid phase
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of a 2D system whose phase diagram exhibits several ordered
phases with different symmetries. The two primary goals of
our study are (1) determination if the spectrum of structures
of the fluctuations in the liquid is broader than or limited to
the motifs exhibited by the ordered phases supported by the
system and (2) determination of the density domains in the
liquid that support particular transient structured fluctuations.
We examine a monitor of the fluctuations in the system that
can be determined from experimental measurements and pro-
vides a unique signature of the structure of a fluctuation. That
monitor is the aperture cross correlation function (ACCF),
obtained from simultaneous measurements at two different
values of momentum transfer of the intensities of coherent
radiation scattered from a domain in the liquid with linear
dimension comparable to the correlation length.10 Although
this paper focuses attention on transient structured fluctuations
in a particular 2D liquid generated by computer simulations,
a subsidiary goal of the research reported is promotion of the
use of the ACCF in studies of disordered 2D and 3D dense
matter.

Fluctuations of the properties of the liquid phase have
been studied for more than a century. For present purposes,
these studies can be crudely divided into two broad categories.
The first category considers fluctuations as small deviations
from the mean values of thermodynamic variables and calcu-
lates the probability distributions of these deviations.11 This
analysis does not ascribe any structure to fluctuations; the
properties of the fluctuations are related to the extensive and
intensive properties of the liquid by standard thermodynamic
relations—e.g., the fluctuation in density depends on the tem-
perature and isothermal compressibility. This version of the
theory of fluctuations is the canonical basis for the interpre-
tation of light scattering from a liquid or a liquid solution.
Using the representation of thermodynamic functions as inte-
grals over combinations of molecular distribution functions,
this theory is also the basis for the Kirkwood-Buff theory of
solutions.12

In the second category, fluctuations are identified with
local ordered particle configurations in a liquid, but this qual-
ity of being “ordered” is defined by an arbitrary proximity to
selected symmetric structures.13–15 For example, if the local
inter-particle separations and “bond” angles around a selected
particle in a three-dimensional liquid are different from per-
fect dodecahedral values by less than arbitrary predetermined
amounts, dodecahedral symmetry is assigned to the surround-
ings of the particle. This approach has been used to search
particle configurations obtained from Monte Carlo and Molec-
ular Dynamics simulation data for unsuspected local ordering
in a liquid and to inform the analysis of nucleation of an ordered
phase.16 The weaknesses of this analysis are its dependence
on an arbitrary definition of proximity to a selected ordered
structure and the lack of a well-defined experimental proce-
dure from which can be obtained a unique signature of the
selected structure.

The conventional characterizations of the local order in a
liquid are usually not directly testable with real world experi-
ments. The most common characterization of the structure of a
liquid, namely, the pair correlation function, does not provide
a signature of the angular symmetry of local ordering in the

liquid; it describes only the angle averaged probability of find-
ing another particle at a distance r from a selected particle. The
pair correlation function is derived from a conventional diffrac-
tion experiment that provides an isotropic average over all
the local structural motifs in the illuminated volume, thereby
generating a one-dimensional intensity versus angle distribu-
tion. However, characterization of the local order around a
particle requires information about the angular distribution
and locations of many particles, typically the three- and four-
body correlation functions. By contrast, angular correlations
between the intensities in the two-dimensional transmission
diffraction from a limited volume do contain information about
the local structure in that volume; it can be extracted via cross
correlation of the simultaneous intensities of the scattered radi-
ation at different angles.10 Thus, if scattering from an area
(volume) about the size of the correlation area (volume) in the
2D (3D) liquid is measured simultaneously with two detectors
with variable angular separation, the cross correlation of the
intensities will have peaks at the angles corresponding to the
Bragg scattering peaks of the local structure, if any. The ACCF
is one of a category of cross correlation fluctuation diffrac-
tion descriptors that provide unambiguous signatures of the
symmetry of local order in a disordered system. Theoretical
descriptions of the experimental method and some applications
can be found in Refs. 16–22.

We now confine our focus to the properties of a 2D sys-
tem whose phase diagram exhibits several ordered phases with
different symmetries. We expect the occurrence and nature of
the transient structured fluctuations in the liquid state of this
system to depend on distance from the liquid-ordered phase
boundaries. The location of phase boundaries and the charac-
ter of phase transitions in 2D systems have been the subject
of numerous studies for the last eighty years.17,23–26 The key
observations are that (i) a 2D system cannot support a fully
ordered crystalline phase with long-range non-decaying trans-
lation order but can support a partially ordered solid phase
with algebraically decaying translation order and long range
“bond” orientation order and (ii) as a consequence it is possible
for a 2D system to support a phase intermediate between the
disordered liquid and the partially ordered solid that has short-
range translation order and algebraically decaying orientation
order, the so-called hexatic phase.27 The existence of the hex-
atic phase was predicted by the Kosterlitz, Thouless, Halperin,
Nelson, and Young (KTHNY) theory of 2D melting.27–32 This
theory characterizes the 2D solid as a continuous deformable
medium with inclusion of the two classes of point topological
defects that have smallest excitation energy to mediate struc-
tural changes; it relates the melting process to the mechanical
instability of the 2D solid. The theory makes specific predic-
tions concerning the rates of decay of the envelopes of the pair
correlation function and the local bond orientation function
(see Sec. III). The former correlation function is measurable
via diffraction of radiation from the liquid. The latter correla-
tion function is measurable only in exceptional cases that per-
mit recording of images of all of the particles; it must usually
be calculated from particle configurations generated by com-
puter simulations. The values of the correlation function decay
rates at the solid-to-hexatic and the hexatic-to-liquid transition
densities are used to locate the respective transition densities.
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We will make reference to particular predictions obtained from
the KTHNY theory at several points in the following text, but
our study of structured fluctuations is not related to KTHNY
theory per se. Indeed, because it is based on the representation
of the system free energy using continuum elastic constants,
the KTHNY Hamiltonian does not account for steric effects
associated with the non-zero size of the particles in the sys-
tem. Although the bond orientation function is a measure of
local order and the decay of its envelope is defined by the elas-
tic interactions described with the KTHNY Hamiltonian, that
function must be calculated from particle configurations that
are not obtained from the KTHNY Hamiltonian. The roles
played by excluded volume and local structure are subordi-
nated to representation by the core energy of a dislocation.
Consequently, the existence of transient ordered fluctuations
in the 2D liquid phase is not addressed and the ACCF of the 2D
liquid provides information not obtainable from the KTHNY
analysis.

A 2D system whose phase diagram exhibits several
ordered phases with different symmetries can be supported
by a pair interaction with a shoulder on an otherwise decay-
ing repulsion.27,28 For the studies reported in this paper,
we have used a pair potential introduced by Ryzhov and
co-workers,33,34 that potential is (see Fig. 1)

u(r) = ε
(
σ

r

)14
+

1
2
ε{1 − tanh(k[r − σ1])}. (1.1)

In (1.1), r is the particle separation, ε is the depth of the poten-
tial well, k and σ and σ1 are, respectively, an inverse scale
length and length scales that characterize the interaction. We
will use the value k = 10/σ for all the calculations reported
in this paper. Ryzhov and co-workers have shown that the
density-temperature (ρ, T ) phase diagram (Fig. 2) of a 2D
system with this pair interaction has two domains in which
a hexagonal (or triangular solid, T) phase is stable, corre-
sponding to the two characteristic lengths σ and σ1, and a
domain in which a square solid (S) is stable.35,36 The phase
diagram also has regions in which, respectively, liquid and
hexatic phases are stable. We note that in a later publication37

Ryzhov and co-workers have shown that the potential (1.1) also

FIG. 1. The model 2D system pair potential [Eq. (1.1)]. Reproduced with
permission from Dudalov et al., Soft Matter 10, 4966 (2014). Copyright 2014
The Royal Society of Chemistry.

FIG. 2. The phase diagram of the 2D system with pair potential given by
Eq. (1.1). Reproduced with permission from Dudalov et al., Soft Matter 10,
4966 (2014). Copyright 2014 The Royal Society of Chemistry. The horizontal
dashed lines indicate isotherms T = 0.12, 0.25, and 0.3, and the vertical dashed
line indicates the isochore ρ = 0.70, along which simulations were carried out.
The pluses (+) identify the hexatic phases.

supports a quasi-crystalline phase with 12-fold symmetry. At
low temperature, the quasi-crystalline phase occupies a very
narrow domain between the square and triangular phases. The
quasi-crystalline phase will not be further considered in this
paper.

Following the dashed lines in Fig. 2, along a single
low temperature isotherm it is possible, starting at low den-
sity and proceeding to high density, to watch the system
undergo liquid-to-hexatic, liquid-to-triangular-solid, triangu-
lar solid-to-hexatic, hexatic-to-liquid, liquid-to-square-solid,
and (omitting consideration of the quasi-crystalline phase that
is not shown) square solid-to-triangular solid transitions. The
hexatic-to-solid and hexatic-to-liquid transitions on the low-
density side of the phase diagram are continuous, whereas
the transitions on the high-density side of the phase diagram
are first order. Returning to Fig. 2, along a high temperature
isotherm (topmost dashed line), the system undergoes only
one liquid-to-triangular-solid transition. And it is possible to
pick a line of constant density (vertical dashed line) that lies
entirely in the liquid phase. Our expectations for the struc-
tures of transiently ordered fluctuations in different regions
of the phase diagram of a system with pair potential given
by Eq. (1.1) are guided by the results of Sheu and Rice’s
study of the structured transient fluctuations in the quasi-two-
dimensional (q2D) near hard sphere fluid confined between
smooth hard walls.38 This system exhibits alternating hexago-
nal and square packed ordered solids as the wall separation is
increased from one hard sphere diameter to 1.57 diameters, to
1.75 diameters, and so on.39 Their results reveal that transient
fluctuations in the q2D fluid have a limited range of structural
motifs and that the precursor fluctuations to a specific ordered
structure do not all exhibit the same structure as the ordered
solid.

With respect to the 2D system with pair potential (1.1),
our simulation results reveal that at low temperature, on the
low and the high-density sides of the transition to the hexatic
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phase that lies between the liquid and the triangular solid phase,
there are structured fluctuations with hexagonal symmetry in
the liquid. There is no evidence for ordered fluctuations in
the liquid with any other symmetry. Along the same isotherm,
at higher density the system undergoes a first order transi-
tion to a square solid phase. In the stable liquid between the
lower density hexatic-to-liquid and the higher density liquid-
to-square solid transitions, we find that transient hexagonal
ordered fluctuations dominate the region near the hexatic-to-
liquid transition and square ordered fluctuations dominate the
region near the liquid-to square solid transition, but both of
these structured fluctuations occur at all densities between
these transition lines. At higher temperatures, at phase points
in the liquid above but close to the density maximum of
an underlying transition, there are ordered fluctuations that
can be correlated with the structure of the lower tempera-
ture phase. Although it is to be expected that very close to
a liquid-ordered phase boundary a structured fluctuation in the
liquid will have the same symmetry as the ordered phase, it
is not obvious that structured fluctuations in thermodynamic
states deep in the liquid phase will be similarly restricted.
The most striking result of our calculations is that no evi-
dence is found in the liquid phase for structured fluctuations
with other symmetries than those of the ordered phases of the
system.

II. MODEL SYSTEM AND CALCULATIONS

We have carried out constant temperature and volume
molecular dynamics simulations of 2D systems of 8700 parti-
cles that interact with the pair potential displayed in Eq. (1.1)
using the 2D version of the LAMMPS package.40 The results
obtained from sample simulations with larger numbers of par-
ticles (20 000) were negligibly different from those with 8700
particles. The phase boundaries determined from our simu-
lations duplicate those reported by Ryzhov and co-workers
within the precision expected from the use of different numbers
of particles in the simulations.

Simulation runs that sample most of the phase diagram
were typically 106 time steps long, with each time step of
duration 0.001 τ, where τ ≡

√
mσ2/ε. The 106 time steps

of each simulation run were divided into 10 000 “frames,”
with a frame representing the output of particle coordinates
and velocities every 100 time steps. To determine that the
system had reached equilibrium in the last 1000 frames of
the simulation, the total energy of the system was monitored
every 1000 time steps. We found that at low temperature and
high density 106 time steps were not enough to reach equilib-
rium. To drive these systems to equilibrium, a perturbation that
generates pathways out of metastable states, specifically a sim-
ulation cell deformation, was applied. We describe the results

FIG. 3. (a) ACCFs for T = 0.12 and
densities 0.38 ≤ ρ ≤ 0.46. (b) ACCFs
for T = 0.12 and densities 0.42 ≤ ρ ≤
0.44. (c) g6(r) for T = 0.12 and densities
0.42 ≤ ρ ≤ 0.45. (d) Amplitude (filled
circles) and full width at half height
(filled squares) of the ACCF peak as a
function of density crossing the liquid-
to-hexatic transition line, normalized to
the peak parameters for ρ = 0.40.
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of our simulations using the conventional reduced variables
r∗ ≡ r

σ , P∗ ≡ Pσ2

ε , V ∗ ≡ V
Nσ2 ≡

1
ρ∗ , and T ∗ ≡ kBT

ε . Since
only reduced variables are referred to hereafter, the asterisks
on these variables will not be displayed in the remainder of
this paper.

The particle configurations generated by the simulations
were analyzed via their structure functions and aperture cross
correlation functions. Here, we imagine that an incident plane
wave with wave vector ki illuminates a small region contain-
ing N particles, defined by an aperture. The linear dimensions
of the aperture are comparable with the correlation length
in the system. The scattered wave that emerges has wave
vector q = ks − ki; its instantaneous intensity is defined
by the real part of the Fourier transform of the particle
positions

I(q, t) =
N∑
i,j

cos
[
q · {ri(t) − rj(t)}

]
. (2.1)

The structure factor for a state point in the phase diagram,
defined by

S(q) =
1
N
〈I(q, t)〉, (2.2)

was calculated from data accumulated over the last 1000
frames of the simulation. For every frame, the positions of
the particles were used to make an image in pixels that was

then Fourier transformed. The multiple frame structure fac-
tors are then averaged together to produce the final structure
factor.

The normalized aperture cross correlation function of
Ackerson and Clark is defined by10

C(k, q) =
〈I(k)I(k + q)〉
〈I(k)〉〈I(k + q)〉

, (2.3)

where I(k) and I(q) are the instantaneous intensities at two
detectors. The brackets indicate both a time and spatial aver-
age; for each time step of the simulation, the entire system
is sampled by computing the aperture cross correlation for a
number of fixed size apertures covering the spatial extent of
the system. By fixing k and putting |k| = |q|, we can measure
a one-dimensional slice of the full four-dimensional function
that depends only on the angle between k and q,

C(φ) =
〈I(φ0)I(φ0 + φ)〉
〈I(φ0)〉〈I(φ0 + φ)〉

, (2.4)

where φ0 is a constant.
We have calculated the ACCF by creating diffraction pat-

terns from randomly located, circular apertures across the
simulation box. The circular aperture radius is set to four par-
ticle diameters. With respect to the aperture size chosen, the
calculations reported by Sheu and Rice38 show that the ACCFs
calculated for apertures of three and five particle diameters

FIG. 4. (a) ACCFs for T = 0.12 and
densities 0.57 ≤ ρ ≤ 0.64. (b) ACCFs
for T = 0.12 and densities 0.59 ≤ ρ ≤
0.61. (c) g6(r) for T = 0.12 and densities
0.58 ≤ ρ ≤ 0.61. (d) Amplitude (filled
circles) and full width at half height
(filled squares) of the ACCF peak as a
function of density crossing the liquid-
to-hexatic transition line, normalized to
the peak parameters for ρ = 0.64.
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are sensibly the same (see Fig. 10 of Ref. 38). A number of
sample regions were taken from the last 200 frames of the
simulation, with the constraint that the total sample area is at
least the area of the simulation box. These regions may over-
lap but were selected such that the positions of their centers
are at least one aperture radius away from the edge of the
simulation box. To calculate the ACCF of a region, the instan-
taneous intensity of the original image is cross-correlated with
the instantaneous intensity of its rotated image at every inte-
ger degree. The ACCF was calculated using data from the
last 1000 frames of the simulation, then averaged over the
samples.

III. RESULTS

We now examine the character of liquid-phase tran-
sient ordered fluctuations as a function of density along the

isotherms T = 0.12, T = 0.25, and T = 0.30, and as a function
of temperature along the constant density line ρ= 0.700. These
isotherms and the isochore were selected to sample regions that
include the most obvious phase diagram features (see Fig. 2),
namely, two ordered hexagonal phases in domains separated
by a liquid phase and a square ordered phase. The ordered
phases have lattice spacings that map, respectively, to the two
length scales of the potential, σ and σ1. From analyses of the
low temperature isotherms (T < 0.3) and the corresponding
translation and orientation order correlation functions, Ryzhov
and co-workers established that in the low-density portion of
the phase diagram the liquid and ordered hexagonal solid are
separated by continuous transformations to and from an inter-
mediate hexatic phase. However, in the high-density portion of
the phase diagram, the transitions between the ordered square
solid and the liquid and the transition between the ordered
hexagonal and square solids are first order. A comparable

FIG. 5. Structure functions calculated
along the T = 0.12 isotherm. For 0.750 ≤
ρ ≤ 0.800, the structure functions imply
the coexistence of the liquid and square
solid phases.
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study of the high temperature isotherms (T < 0.3) reveals
only a first order transition from the liquid to the ordered
hexagonal solid. We remind the reader that the potential (1.1)
also supports a quasi-crystalline phase with 12-fold symme-
try37 that, at low temperature, occupies a very narrow domain
between the square and triangular phases, and which we
ignore.

A. 0.38 ≤ ρ ≤ 0.46 along the isotherm T = 0.12

The local bond orientation correlation function,

g6(r) =
〈
ψ6
∗(0)ψ6(r)

〉
, (3.1)

is a measure of the importance of 6-fold orientation order in
the 2D system. In (3.1),

ψ6 =
1

NN

∑
j
exp

[
6iθ

(
rij

)]
. (3.2)

Here, the index j runs over the NN nearest neighbors of the
ith particle, found via a Voronoi tessellation, and θ(rij) is the
angle between the straight line (bond) connecting the centers
of particles i and j and an arbitrary reference axis that is held
fixed throughout the entire calculation. KTHNY theory pre-
dicts that in the hexatic phase g6(r) = 〈ψ6

∗(0)ψ6(r)〉 ∝ r−η

with 0 ≤ η ≤ 1
4 , and that η = 1/4 on the boundary between the

hexatic and liquid phases.35 Using that criterion, Ryzhov and
co-workers located the low-density boundary between the hex-
atic and liquid phases on the T = 0.12 isotherm at ρ = 0.4325.
We display in Fig. 3 the ACCFs and g6(r) for the density range
0.38 ≤ ρ ≤ 0.46. We find that transient ordered fluctuations
with 6-fold symmetry are present in the liquid as much as
11% below the hexatic-to-liquid transition density. We find no
evidence for ordered fluctuations with any other symmetry.
Recalling that the hexatic phase has quasi-long-range orienta-
tion order without translation order, as expected, the six-fold
symmetry is stronger in the hexatic phase than in the liquid
phase. Given the continuous character of the hexatic-to-liquid

FIG. 6. Several ACCFs at densities in the stable liquid domain 0.67 ≤ ρ
≤ 0.76 and in the stable square solid domain 0.80 ≤ ρ ≤ 0.85. The ACCF for
0.77 ≤ ρ ≤ 0.79, as implied by the structure function displayed in Fig. 5(c),
shows the fluctuations in the liquid-square solid coexistence domain. The
temperature is T = 0.12.

FIG. 7. ACCFs along the isochore ρ = 0.70 at T = 0.12, 0.20, 0.30, and
0.40. The ACCFs for T = 0.20, 0.30, and 0.40 are translated up by successive
increments of 0.1.

transition, it is not surprising that the intensity of the six-
fold symmetry increases continuously over the density range
0.38 ≤ ρ ≤ 0.46, as shown in Fig. 3(d). It is noteworthy that
the full width at half height of the peaks in the ACCF does not
change over the density range 0.38 ≤ ρ ≤ 0.46 that brackets
the liquid-to-hexatic transition density, implying that the dis-
tribution of angular ordering of the fluctuations in the liquid
domain is the same as that in the hexatic domain.

B. 0.58 ≤ ρ ≤ 0.64 along the isotherm T = 0.12

Staying on the isotherm T = 0.12, the stable phase for
the domain 0.46 ≤ ρ < 0.58 is ordered hexagonal, for 0.58
≤ ρ ≤ 0.60 the stable phase is hexatic, and when ρ > 0.60,
the system is in a liquid phase. Figure 4 displays the g6(r)
and the ACCFs for this temperature and range of densities.
As expected, we find that 6-fold symmetry is present through-
out the hexatic domain and that the symmetry persists into
the liquid phase above the hexatic-to-liquid transition density.
The intensity of the 6-fold symmetry is markedly greater in

FIG. 8. The fit of amplitudes of simultaneous square and hexagonal ordered
fluctuations to the ACCF line-shape for ρ = 0.70 at T = 0.12.
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the hexatic phase than in the liquid phase. Complementary to
the behavior observed on crossing the liquid-to-hexatic transi-
tion line % = 0.43, the intensity of fluctuations with hexagonal
symmetry decreases continuously across the hexatic-to-liquid
transition line at % = 0.596. On crossing the transition line into
the liquid phase, the width of the peaks in the ACCF increases
somewhat.

C. 0.67 ≤ ρ ≤ 0.77 along the isotherm T = 0.12 and
T = 0.12, 0.20, 0.30, and 0.40 along the isochore ρ = 0.70

The region 0.67 ≤ ρ ≤ 0.77 along the isotherm T = 0.12
is occupied by the liquid phase, and the structure factor of
the system suggests the coexistence region for the transition
to the square phase starts around ρ = 0.770 (Fig. 5). At this
density, azimuthal intensity maxima superposed on a ring of
intensity can be distinguished. Given that the ordered solids at

the low density and high density ends of this density range have
different symmetries, we ask how the structured fluctuations
in the liquid between these ordered solid structures change as
the density is varied from 0.65 to 0.77.

We display in Fig. 6 the ACCFs for several densities
in the stable liquid domain and two densities in the stable
square solid domain. At the low-density end of this density
range, the dominant structured fluctuations are hexagonal.
At the upper end of this density range, the dominant struc-
tured fluctuations are square. However, both structured fluc-
tuations occur, with varying concentrations, at all densities in
the range 0.67 ≤ ρ ≤ 0.77. For example, we show in Fig. 7
the ACCFs for four temperatures along the constant density
line ρ = 0.70, and as demonstrated in Fig. 8, the ACCF line-
shape is well represented by the sum of contributions from
4-fold to 6-fold ordered fluctuations. It is immediately evident

FIG. 9. Structure functions calculated
along the T = 0.30 isotherm imply the
existence of only the liquid phase.
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FIG. 10. ACCFs for several densities
along (a) the isotherm T = 0.25 and (b)
the isotherm T = 0.30.

that square and hexagonal ordered fluctuations are simultane-
ously present, and that the ratio of concentrations of square to
hexagonal ordered fluctuations decreases as the temperature
increases.

D. 0.40 ≤ ρ ≤ 0.90 along the isotherm T = 0.25
and 0.40 ≤ ρ ≤ 0.95 along the isotherm T = 0.30

We now examine the structures of the fluctuations along
the isotherms T = 0.25 and T = 0.30 for the density ranges 0.40
≤ ρ ≤ 0.90 and 0.40 ≤ ρ ≤ 0.95, respectively. The T = 0.25
isotherm comes very close to the maximum temperature of
the transition line for the higher density liquid-to-square tran-
sition, but for ρ ≤ 0.90 both isotherms lie entirely in the liquid
domain. When T = 0.30, the onset of the liquid-to-ordered-
hexagonal-solid is at about ρ = 0.92 (see Fig. 2). Indeed, the
structure functions calculated at sample densities along the
T = 0.30 isotherm, shown in Fig. 9, display the characteristic
continuous ring structure of the disordered liquid. However,
the ACCFs for those sample densities when T = 0.25 and
T = 0.30, shown in Figs. 10(a) and 10(b), reveal the existence
of structured fluctuations that can be correlated with the phase
transitions that lie at lower temperature. Thus, at the lowest
sample density shown in Figs. 8 and 9, namely, ρ = 0.40, the
phase point is far from the liquid-to-hexatic transition line, and
the amplitudes of the fluctuations are quite small, with weak
hints that both hexagonal and square transient structures are
populated. When the density is ρ = 0.50, the phase point is
much closer to the liquid-to-hexatic transition line, the ampli-
tude of the hexagonal fluctuations is much greater than when
ρ= 0.40, and the amplitude of the square fluctuations is greatly
diminished, noting that the amplitude of the trough between
the ACCF peaks at 60◦ and 120◦ is not as small as that between
the peaks at 120◦ and 180◦. When ρ = 0.60, the overall ACCF
structure is very similar to that when ρ = 0.50. When ρ = 0.70,
the phase point is about halfway between the critical densities
for the liquid-hexagonal solid and liquid-square solid transi-
tions, and the amplitudes of the hexagonal and square structure
fluctuations are comparable (see Sec. III C). At higher densi-
ties, ρ = 0.80 and ρ = 0.90, the hexagonal fluctuations appear
to be favored relative to the square fluctuations.

IV. DISCUSSION

We have used the ACCF of a 2D liquid to obtain informa-
tion about the structure of transient fluctuations that cannot
be obtained from other characterizations of the liquid. We
emphasize this point with a composite graphic illustration of
the information content of several characterizations of thermo-
dynamic states of the 2D Ryzhov liquid studied in this paper,
shown in Fig. 11. The top row of panels in Fig. 13 displays
the Voronoi tessellations of configurations of particles in the
liquid state for three densities, ρ = 0.420, 0.700, and 0.750, all
at the reduced temperature T = 0.12. In each of these states,
the Voronoi tessellation clearly displays disorder in the par-
ticle configuration via the presence of a dense distribution of
cell sizes. The numbers of Voronoi cells in each state with
less than and more than six sides, shown in the second row of
panels, are large, and the corresponding diffraction patterns,
shown in the third row of panels, are continuous rings with
uniform azimuthal intensity. None of these representations
provides a signature of the structured fluctuations in the liquid
that are revealed by the ACCFs shown in the bottom row of
panels.

The results of the simulations reported in this paper
extend the findings of Sheu and Rice.38 They showed that
ordered fluctuations in a q2D hard sphere system confined
between smooth hard walls exist well into the stable liq-
uid region, that the character of the fluctuations is sensitive
to the separation of the confining boundaries applied to the
system, and that the fluctuations exhibited a very limited
range of structural motifs. In this q2D system, the struc-
tures of the stable ordered phases follow the sequence 1∆
→ 2◽ → 2∆ → 3◽ → . . . as the number of layers between
the walls increases from 1 to 2 to 3 . . .. Furthermore, the
ordered fluctuations assume the same symmetry, either hexag-
onal or square, as the solid to which the liquid freezes at
densities about 2% below freezing, while deeper in the liq-
uid phase they assume the symmetry of the solid that is
stable at slightly smaller plate separation. The fluctuations
found do not exhibit other ordered structures. The Ryzhov
pair potential, which supports a richer set of 2D ordered
phases than does the hard sphere potential, also supports only
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FIG. 11. Comparison of characterizations of the structure in the 2D Ryzhov liquid. The top panel displays Voronoi tessellations of particle configurations with
densities ρ = 0.420, 0.700, and 0.750. The Voronoi cells are labeled by the number of sides n < 3 (bright pink), n = 3 (teal), n = 4 (red), n = 5 (yellow), n = 6
(blue), n = 7 (neon green), and n > 7 (violet). The second row of panels displays histograms of the numbers of Voronoi cells with n sides, the third row of panels
displays the diffraction pattern of the liquid, and the bottom row of panels displays the ACCFs of the liquid.

fluctuations with motifs related to those stable solid structures.
We regard these findings, that there is no evidence for struc-
tured fluctuations in the liquid phase with other symmetries
than those of the ordered phases of the system, to be the
most striking result of our calculations. Whether this find-
ing applies generally to fluctuations in systems with other

interaction potentials remains to be established. Indeed, the
relationship between the structures of transient fluctuations
in a liquid and the particle-particle pair potential is largely
unexplored.

We argue that the ACCF provides a unique tool for explor-
ing the structures of fluctuations in the liquid phase. It is not
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obvious how to guess what these structures will be from knowl-
edge of the pair potential and/or the ordered phases that the
potential supports. For example, it is now known4,5 that a cen-
tral pair potential can support the formation of 2D honeycomb
and Kagome lattices, both of which have empty lattice sites.
The ACCFs of these systems can provide information concern-
ing the structures of transient fluctuations in the liquids prior to
transition to the ordered states. In particular, we are interested
to learn if the fluctuations in the mobile liquids exhibit struc-
tures that mimic the local structures in the solids, or if they have
a conventional hexagonal motif that “opens” on solidification.
The ACCF of a system can also provide information concern-
ing how internal constraints affect local structures in the liquid.
For example, for a system very like that studied in this paper but
with a longer soft-shoulder range, Ryzhov and co-workers42

showed that the phase diagram becomes more complex; the
phase diagram has a lower density domain that has a melting
transition with two continuous steps consistent with KTHNY
theory and a higher density domain with a first order solid-
to-liquid transition with no intermediate hexatic phase. In this
system, adding quenched disorder by randomly pinning par-
ticles at 0.1% concentration causes the high density melting
scenario to split into a continuous solid-to-hexatic transition
plus a first order hexatic-to-liquid transition. This pinning pro-
cedure also significantly broadens the stability range of the
hexatic phase. A study of the ACCF of this system should
reveal what happens to the fluctuations in the liquid when the
system is partially pinned, and thereby illuminate the basis for
the shift in phase boundaries generated by the pinning. These
matters, currently under investigation, will be discussed in a
future paper.
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